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Block 19 - continued

a third step, the secondary set is considered; in particular the
independence/dependence of the two sets. The correlation of

-location with trace length is considered with the line-kernel function
methods and the nearest neighbor fiber distance method.

The hierarchical model has been applied to two cases in which
detailed fracture patterns have been observed, one with a single set
and one with two sets. The validity of the model was checked by
visual comparison between model prediction and mapped patterns I
and most importantly, by statistical tests such as the second-moment
analysis and the Monte Carlo test. A satisfactory fit of the predicted
pattern was obtained in both cases.

Finally, a topological application of the stochastic geometry model is
developed. Using a fully persistent block model, the kinematic as
well as the kinetic stability of a rock slope is investigated. Through
sensitivity studies, the most significant parameters affecting slope
stability are found.

It is important to note that the combined hierarchical and topological I
model can be applied to any problem involving stability or failure of
fractured bodies or masses; thus not only slope stability but also
tunnel stability can be considered. Although limited at present to
fully persistent fractures, the model concept if also applicable to
non-persistently fractured masses/bodies and can thus include
concrete structures.
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Chapter 1

INTRODUCTION

Since rock masses are usually discontinua, one needs to consider fracture geometry

when considering rock mass behavior. The MIT rock mechanics group has developed

idealized stochastic models : Baecher, et al. (1977) assumed a disk shaped fracture in a

space. The Baecher model can be constructed by generating a homogeneous Poisson point

pattern for fracture centers and by adopting suitable fracture size distribution functions as

well as fracture orientation distribution functions. Veneziano (1979), in his model, used a

Poisson plane process in space followed by a Poisson line process in each plane. Using a

persistence parameter, polygonal fractures can be constructed in space. Dershowitz (1985)

modified the Veneziano model by considering fracture intersection behavior. With a

Poisson plane process, he generates intersections of various fracture planes in space which

in turn bound polygonal fractures. These simplified stochastic fracture models have been

applied in a number of cases. They are limited, however, since they cannot represent many

fracture patterns encountered in the field. Specifically :

* They do not account for spatial nonhomogeneities such as fracture clustering.

" The models are only loosely tied to the geologic genesis of the fractures. In
particular, most models assume independence among fracture sets. From a
geologic viewpoint, this assumption is often incorrect since the fracture sets
are, in almost all cases, sequentially generated with inter-relations among
themselves.

" Only in a few cases have the models been validated using actual fracture data.

In this research project, advanced stochastic geometry models are created which better

represent reality.

Stochastic geometry can handle both the geometric and the stochastic nature of a

structure (i.e., rock mass), In general, stochastic geometry can be considered in different

ways :
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1. Based on a geometry (shape), which can be a point or line process in a plane, I
or a three-dimensional Random Closed Sets ( RACS ) process.

2. Based on data sets for the different characteristics; for each characteristic, the
data set can be univariate or multivariate processes.

Application of point processes can be found in the field of forestry. Trees in a forest 3
can be represented as points in a region. From this simplified process, we can find the

inter-relations among trees. Examples of line processes come from material science. A 3
defect in the metal surface can be regarded as a line ( or a fiber with finite length ). In the

field of microscopy, one often uses a RACS model where the closed sets consist of spheres I
or disks in a space. If the characteristics of the model are not uniform, one employs I
bivariate or multivariate point, fiber or RACS processes. For example, if two kinds of trees

exist in a region, the bivariate point process becomes a plausible model. 3
Within the framework of rock fracture modeling, a point process can be used if the

distribution of fracture traces on a rock surface is simple. Each trace is actually a segment

(fiber) of finite length, but if the trace length, trace orientation and trace position are

independently distributed, we can describe the segment as a point, usually the mid point. If

the above mentioned trace characteristics are correlated with each other, we use the fiber 3
process for modeling fractures in a plane. A RACS process seems to be best suited for the

three dimensional situations we are actually interested in. However, these models rely on I
information which is not readily available such as size and shape of fractures. Eventually, U
RACS process models will have to be developed.

We, at this stage, want to concentrate on the point and fiber processes. Specifically, I
we will develop alternative models to the conventional homogeneous Poisson point and

Poisson fiber processes. The main features of these models are the hierarchical description

of fracture sets which allows one to reproduce the sequential genesis of fracture sets, and 3
the consideration of dependencies among fractures of the same set or of different sets. The I

I
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sequential generation and correlation of fracture sets correspond to what happens in nature.

Equally important as the modelling principle is the availability of statistical procedures to

estimate parameters and validate the model. These will provide the basis for future work on

the RACS processes.

To apply the hierarchical fracture geometry model, a two dimensional rock slope will

be considered. The fracture patterns simulated with the hierarchical model can be used in

any rock mass problem such as flow through fractured rock masses, deformabiity of

fractured rock masses and stability of fractured rock masses. The last of these problems is

chosen here because it has great practical significance both regarding rock slope stability

and stability of any fractured mass (rock mass around tunnel, concrete structures with

cracks. etc). For such applications, existing models are not suitable. Consequently, new

models need to be developed which, in our case, will consist of a combination of the

hierarchical fracture model and a topological model.

In Chapter 2, we will discuss the basic characteristics of the point process and of

some alternative models which may be used in rock fracture modeling. In particular, we

will consider the Complete Spatial Randomness ( CSR ) as an indicator of the

homogeneous, isotropic point process. In Chapter 3, the appropriate point process models

which can be best fit to our mapped data are specified and developed. Additional

mathematical expressions are introduced which make the unknown functions ( in our case,

the trace intensity function ) easy to formulate. In Chapter 4, we will introduce the basic

characteristics of the fiber process. Also traditional fiber process models will be reviewed

and criticized. In Chapter 5, we will expand our point process model to a fiber process

model. Topological application of the stochastic fracture geometry model is considered in

Chapter 6. Finally, in Chapter 7, conclusions will be drawn as to advantages and

limitations of the fracture geometry models.
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Chapter 2 1
BASIC CHARACTERISTICS OF POINT PROCESSES

Point processes can be regarded as statistical models for point-like objects in a plane. 3
Traditionally trees in a forestry or earthquake occurences in the space-time domain have

been represented by point patterns. The reason for using a point processes is to analyze I
patterns of points and to suggest a plausible mechanism by which they might have been

generated. In our case, the traces on a rock outcrop are considered as segments, and can be

represented as points, usually mid points, in a plane. ( This is a first approximation ; more 3
complex processes will be introduced later ). Fig. 2-1 is an example of a simple trace

pattern and we will consider such trace data with point processes. Usually, one will assume 3
a Poisson point process as a null hypothesis when generating center points of rock fractures

in a plane or space. U
In this Chapter, we, first of all, check the above mentioned null hypothesis using I

mapped data such as the fracture traces of Fig. 2-1. There are many tests which can be used

to check randomness assumptions. Two relatively powerful tests are described here, and a I
brief history of various test methods is given in Appendix A. Next, the second moment

properties of the point processes are considered since, in most cases, point patterns can be

characterized by second moments. Finally, we will discuss various point process models, 3
including the homogeneous Poisson point process model, which may be applied to rock

fracture modelling. U
I
U
I
I
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Figure 2- 1: Map of Florence Lake Outcrop (After Segall & Pollard, 1983;
Only Traces within Rectangular

Region are Considered)
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2.1 Test of Complete Spatial Randomness ( CSR)

The simplest assumption of point pattern characteristics is no interaction between the

points. This is called Complete Spatial Randomness (CSR) ( Diggle, 1983 ). If the intensity

of points changes from place to place, the pattern is not homogeneous and we call it 3
inhomogeneous or heterogeneous. Directional patterns are called anisotropic.

The hypothesis of CSR for a point pattern asserts that, i
1. The number of events in any planar region A with area IA I follows a Poisson

distribution with mean XIA I, where X is the intensity. 3
2. Given n events x i in a region A, the xi are an independent random sample

from the uniform distribution on A.

There are two reasons for considering CSR.

1. CSR is a minimal prerequisite for randomness.

2. CSR operates as a dividing hypothesis between regular and aggregate
patterns.

Therefore, if the given set of points does not follow CSR ( because there is an

attractive or inhibitive correlation among points ), our aim will be to find non-Poisson 3
models and to establish a method for testing the fit of any proposed model.

To test CSR of a given data set, we use two different methods. One is based on 1

distance measures, the other uses a quadrat count. Only the distance measure method will 3
be discussed here, specifically, inter-event distances and nearest neighbor distances. This

will be done because, in some cases, the quadrat count method cannot provide much 3
information, for example, on clustering or inhibitory behavior, and it is not easy to

visualize. Furthermore, if the number of data points is small, the quadrat count method may I
not be useful. The specific distance measure methods described here are the inter-event

distances and nearest neighbor distances.

I
I
I
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2.1.1 Inter-event Distances

The theoretical distribution of the distance t, H(t), between two events independently

and uniformly distributed in a region A depends on the size and shape of A, but can be

expressed in closed form for the most common cases of a square or circular area A

j (Bartlett, 1964). Assuming that for the particular region A in question, H(t) is known, we

can calculate the empirical distribution function ( EDF ) of inter-event distances. This

function, Hl(t) say, represents the observed proportion of inter-event distances ti, which are

j at most t. Thus,
A - t (2.1)
HI(t)= {In( n- I ) -1no.(! t) (21

where no. means "the number of' and H,(t) is the empirical distribution function. A plot of
A

H,(t) on the ordinate against H(t) on the abscissa should be roughly linear if the data are

compatible with CSR. To assess the significance and the deviations from linearity, the
A

conventional approach would be to find the sampling distribution of HI(t) under CSR. Since

this is complicated by the dependence between inter-event distances with a common end-

point, one, therefore, proceeds as follows:

1. Calculate EDF Hi(t), i = 2,3,...,s, from each of s-i independent simulations of
n events independently and unifomly distributed on A

2. Define upper and lower simulation envelopes,
AU(t) =max ( Hi(t)),

A

L(t)=min (Hi(t)), i=2,3,- ,s. (2.2)

these simulation envelopes can also be plotted against H(t), and have the
property that under CSR, and for each t,

A A

P(ntIt) > U(t)) =P (HI(t) < L(t) ) s- 1 (2.3)

since we assume that each simulation is distributed independently and
unifonnly on A. The simulation envelopes are intended to help in the

interpretation of the plot of H,(t) against H(t). That is, if the theoretical
pattern lies between U(t) and L(t) throughout its range, it means acceptance of
CSR.

3. If the region A is one for which the theoretical distribution function H(t) is
unknown as in our case ( rectangular region ), a test can still be carried out if
H(t) is replaced by

I
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Hi(t)=(s-1 )-I I Hj(t) (2.4)

j~i

Similarly, the graphical procedure then consists of plotting Hi(t), U(t) and

L(t) against HI(t) or, to make it easy to visualize, plotting Hi(t), U(t), L(t) and

HI(t) against distances. Note that because H,(t) is a simulated value under the
assumption of CSR and does not include the original data, it provides an
unbiased estimate of H(t). Checking CSR with simulation envelopes can also

be applied here, i.e., if HI,(t) lies between maximum (U(t)) and minimum
(L(t)) envelopes throughout its range, it means acceptance of CSR.

Fig. 2-2 shows an inter-event distance test of our mapped pattern from Fig. 2-1,

where the averaged value is given in Eqn (2.4), and for clarity, U(t) and L(t) are replaced by 3
maximum and minimum value, respectively. From this figure, we do not accept the CSR

assumption for the data of Fig. 2-1. This means, our mapped pattern is not random and 3
there seems to be a certain interaction among mid points. However, with this test, it is not

easy to see the degree of interaction. In other words, we see the clustered behavior of the I
traces from Fig. 2-1, but we cannot use this test to quantitatively describe the clustering 3
behavior.

Also from a simple Monte Carlo test (Bamard, 1963), we can decide on the 3
acceptance of CSR for given data. When we use the Monte-Carlo test, it provides a useful

check on the applicability of the asymptotic theory. Let u, be the observed value of a

statistic U and let ui, i = 2,.. . ,s be corresponding values generated by independent random 3
sampling from the distribution of U under a simple hypothesis H. Let u) denote the j-th

largest amongst u,, i= 1, ,s. Then, under H, 3
P (uI =u =,- j= 1,. • • ,s (2.5)

and rejection of 11 on the basis that u, ranks k-th largest or higher gives an exact, one-sided I
test of size k . For example, if u1 is the highest among 20 sampling values, one rejects the

hypothesis of the 5% significance level. This assumes that the values of the ui are all I
I
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different, so that the ranking of u, is unambiguous. In our case, define ui to be a measure of

the discrepancy between Hi(t) and H(t) over the whole range of t, I
ui=f I Hi(t)-H(t) }2dr (2.6) 3

and proceed with the above mentioned Monte Carlo test based on the rank of u *.

In our case, we tried 49 simulations ( i.e., s = 50 ) and, from the one-sided test at the

2% significance level, we reject CSR for our mapped pattern.

2.1.2 Nearest Neighbor Distances i

For n events in a region A, let y denote the distance from the i-th event to the nearest

other event in A. The yi are called nearest neighbor distances. We can calculate the EDF, 3
GI(y) say, of the nearest neighbor distances, i.e.,

0GI =n - I no. (y i < y) (2.7)

In many practical situations, interactions between events exist, if at all, only on a small

physical scale : for example, trees would be expected to compete for sunlight or nutrient

within an area roughly confined to their crowns or root systems, respectively. In such a 3
case, nearest neighbor distances provide an objective means of concentrating on small inter-

event distances when a precise threshold distance cannot be specified in advance. The i
theoretical distribution of nearest neighbor distance Y under CSR depends on the number of 3
events n and on A, and is not expressible in closed form because of complicated edge

effects. An approximation which ignores these edge effects is obtained by noting that if IA I 3
denotes the area of A, then 7ry 2JA 1- 1 is the probability under CSR that an arbitrary event is

within distance y of a specified event. Since the events are located independently, the I
approximate distribution function of Y is

G(y)= I -( 1 -ry 2IA 1-1 )n-I (2.8) 3
The EDF of nearest neighbor distances, G,(y), can be compared with upper and lower 3
simulation envelopes from simulated EDFs Gi(y) : i=2,3,... ,s in a similar way to the

I
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inter-event method. The approximate result, Eqn (2.8), can be used to suggest a suitable

I range of tabulation but, because it is approximate, it is generally preferable to use theu sample mean G1 (y) of simulated EDFs.

A

Gi(Y)= (S- I -I Gi(y) (2.9)U ji
Here again, G(y) involves only the simulation of CSR and it provides an unbiased estimate

of G(t).

Now we can construct extreme envelopes like those in Fig. 2-3 in a similar way as weI A
did in Fig. 2-2. We can plot G1(t), U(t) (max.), L(t) (min.) and Gl(t) against distance t

where U(t) and L(t) can be derived as follows,

U(t)=max (Gi(t)),

L(t)=min (Gi(t)), i=2,3, ... ,s. (2.10)

3 Fig. 2-3 shows rejection of CSR. In addition, we clearly see the interaction of data

points. Near the distance 1.0 and 3.0, we see the clustering phenomenon among traces,

whereas near 2.5, there seems to be inhibitory interactions.

Again a Monte-Carlo test, which is analogous to Eqn (2.6), shows rejection of CSR at

the 2% significance level. In this case, we replace the H function of Section 2.1.1. by G

* function shown above.

2.2 Second Moment Properties of Point Processes

3 To compare any candidate model with a set of data, we often use first and second

moment properties of a point process. Here, E(x) is the expectation of a random variable x

; N(A) represents the number of events in a region A ; IA I is the area of A ; dx is an

infinitesimal region which contains the point x ; b1(t) represents the disc with center x and

I radius t ; R 2 is the entire plane where R2 = b(R)xb(R) = { (x,y) : x, y e R ) which is the

3 l co-ordinatization of the plane and generally Rd is referred to as the d-dimensional

Euclidean space.

I
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First-order properties are described by an intensity function,

4X) = Irn 0(E[N(dx)] (2.11)
I dxim IdxI)

For a stationary process ( i.e., the process in any region A of the plane is invariant under

arbitrarv translation of A ), X(x) assumes a constant value X, the mean number of events per

unit area. The second-order intensity function is similarly defined as

,( dx I im (E[N(d)N(dy)]I) forx,v in R2  (2.12)

For a stationary process. X,(x.y) = X(x-y) ; for a stationary, isotropic ( i.e., invariant under

rotation ) process. X,(x-%) reduces further to X,(t), where t is the distance between x and y.

In statistical mechanics, the scaled quantity X2(t) / X2 is referred to as the radial distribution

function, although it is not a distribution fuaction in the accepted statistical sense.

An alternative characterization of the second-order properties of a stationary,

isotropic process is provided by the function K(t) (Ripley, 1977), which can be defined as

K(t)=X-' E[ nuiberoffurtherevents within distance t of
an arbin'an' event] (2.13)

Thus. X K(t) can be interpreted as the expected number of pairs of points less than distance

t apart with the first point in a given set of unit area. In order to establish a link between

K(t) and X.(t), we shall assume that our process is orderly, by which we mean that multiple

coincident events cannot occur. The expected number of further events within distance t of

an arbitrary event is,

X K(t)= foo Iol,(x)/l }xdxdO

=-2nk-' Ji(x)xdx (2.14)

or

? " (t) = X2 ( 2t )-n K'(t) (2.15)

where 0 is the angle of the arc in a circle with center x and radius t. The covariance density

_. y is thenI
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y(t) = X2(t) - 2(2.16)i

The above mentioned second moment characteristics play an important role when we

consider the relative positions of two points of the process and quantify the apparent

deviation from Poisson randomnes: to clustering or inhibition between points. For this, we,

again, test CSR of our pattern with the second moment properties. If the mapped pattern I
follows the homogeneous Poisson point process, and if we use Monte-Carlo simulations,

edge-corrected cecond moments of given data sets would exist between extreme envelopes.

The extreme envelopes can be plotted by adopting a maxihum and minimum K(t) value of

the null hypothesis. and edge-correztions can be performed either by graphical concepts

(Ripley, 1977 or Diggle, 1983) or by toroidal shifts (Lotwick & Silverman, 1982). The idea m

of the edge-correction can be understood, if we think of small areas near the boundaries,

i.e., there may exist some additional points which do not lie inside the region, but the

influence that these points have needs to be considered. We will discuss edge-correction 3
methods in Appendix B.

Fig. 2-4 shows a second moment analysis of data given in Fig. 2-1. It is constructed i
by assuming that the data follow a homogeneous Poisson point process ; the simulation

envelopes are the realizations of the homogeneous Poisson point pattern. From the figure,

we see the discrepancies of the second moments between the simulated and the mapped i

values. As a result, we conclude that the mapped pattern does -lot follow the homogeneous

Poisson point pattern. i.e. CSR. This was confirmed previously when we tested CSR with I
the inter-event and the nearest neighbor distance method. Also the Monte-Carlo test shows

rejection of the homogeneous Poisson point process.

In some cases, we need to include the relative positions of three and more points ;

Hanisch (1983) considers this case in detail. He shows that the third moment measure is

determined by a function K(ti,t,,O) of three variables, where t, t2 are distances of two i
points 'rorn the origin and 0 is the angle between these two points. Meanwhile, Baddeley & 3

I
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Silverman (1984) showed that investigation of the second moment properties alone cannot,

sometimes, detect differences between point patterns with identical K functions. I

2.3 Point Process Models U
In this section, we discuss various models which can be applied to rock fracture I

modeling. We already mentioned the application of the homogeneous Poisson point process

and saw that it is often inadequate to model rock fracture patterns. In order to provide a

systematic treatment, the discussion below will nevertheless start with the definition of the

homogeneous Poisson point process. I
2.3.1 Homogeneous Poisson Point Process

This process represents the simplest possible stochastic mechanism for the generation I
of a spatial point process. It corresponds exactly to the definition of CSR given in Section 1
2.1.

1. For a given intensity X > 0 and any finite planar region A, N(A) has a Poisson
distribution with mean XIAl~.i

2. Given N(A) = n, the n events in A form an independent random sample from
the uniform distribution on A.

3. For any two different regions A and B, N(A) and N(B) are independent.

so from Eqn (2.12),

X2 (t)=? 2, t > 0 (2.17)

and from Eqn (2.14) and Eqn (2.17),

K(t)=7t 2, t > 0 (2.18)

This result is quite clear when we refer to the definition of the second moment function I
(see, Eqn (2.13)) since, in the homogeneous case, the expected number of further events

within distance t become Xnrt 2, thus leading to Eqn (2.18). Fig. 2-5 shows an example of

the homogeneous Poisson point pattern.

I
I
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Figure 2-5: An Example of the Homogeneous Poisson Point Pattern

2.3.2 Inhomogeneous Poisson Point Process

A class of non-stationary point processes is obtained if the constant intensity X of the

Poisson point process is replaced by a variable intensity function X.(x), where,
1. N(A) has a Poisson distribution with mean fA X.(x)dx.

2. Given N(A) = n, the n events in A form an independent random sample from
the distribution on A with probability density function proportional to XL(x).

However, difficulties remain when the intensity function, X.(x), is hard to obtain. Fig

2-6 shows a realization of the inhomogeneous Poisson point pattern where XL(x,x2)=

exp(-2x ,-X2).

2.3.3 Poisson Cluster Process

The Poisson cluster process (Neyman & Scott, 1958) is often called parent-daughter

model. This kind of process provides a satisfactory basis for the modeling of aggregated

planar point patterns.



I
-29- I

* I
X2

0

A I
I . - o- * * . . I

*2  S S S•oo

• * S

I •** * *S

Figure 2-6: An Example of the Inhomogeneous Poisson Point Pattern

1. Parent events form a Poisson process with intensity p.

2. Each parent produces a random number s of offspring, realized independently
and identically for each parent according to a probability distribution ( P, s =0,1'... .

3. The positions of the offspring relative to their parents are independently and
identically distributed according to a probability density function (PDF) h(.).

Poisson cluster processes are stationary, with intensity X = pE[s]. They are isotropic I
if h(.) is a radially symmetric function such as a bivariate normal distribution function. To

express the second-order properties, it is convenient to define

h,(z) = f h (x) h (x-z)d (2.19)

the PDF of the vector difference between two offsprings from the same parent. The

expected number of ordered pairs of such offspring is E[S(S- 1 )], so that I
X,( x-y )=X 2+pE[S(S- 1 )] h,(x-y) (2.20)

in which the first term arises from a consideration of two offsprings at x and y from

I
I



I-30-
different parents, and the second from two offsprings of the same parent. Fig. 2-7 illustrates

Ian example of a Poisson cluster process with 25 parents and four offsprings per parent.

I

i III

a *
•

e.

I Figure 2-7: An Example of a Poisson Cluster Process

2.3.4 Cox Process ( Doubly Stochastic Process )

The Cox process may be appropriate if the observed pattern reflects underlying

environmental variation. The source of the environmental heterogeneity might itself be

stochastic in nature. This suggests investigation of a class of doubly stochastic processes

formed as inhomogeneous Poisson processes with stochastic intensity function. Thus,

1. (A (x); x r R 2 ) is a non-negative-valued stochastic process.

2. Conditional on IA(x)=X (x);x r R 2 ), the events form an inhomogeneous
I Poisson process with intensity function %(x).

The difference between the Cox process and the inhomogeneous Poisson point

process is that the intensity function of the Cox process is a stochastically varying function,

whereas the intensity function of the inhomogeneous Poisson point process is deterministic.

First- and second-order properties are obtained from those of the inhomogeneous

Poisson process by taking expectations with respect to ( A(x) ). Thus, in the stationary

case, the intensity is,

I
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X=E[A(x)] (2.21)

Also, the conditional intensity of a pair of events at x and y given { A(X) ) is A(x)A(y), so I
that,I

,X2(x,y) = E [ A(x) A(y) ] 
(2.22)

In the stationary, isotropic case, this can be written as

X2(t) = X2 +y (t) (2.23)

where,
w(t)=Cov I A(x),A(y) } 

(2.24)

and t is the distance between x and y. Note that the covariance function y(t) of the intensity

process is also the covariance density of the point process. From a statistical point of view,

the distinction between clustering and heterogeneity can only be made if additional I
information is available and Diggle (1977) suggested a two-phase test for distinction. Fig.

2-8 and Fig. 2-9 show a realization of the Cox process and corresponding covariance

function, respectively (see Matem, 1971). U

I*" , . .I

" " I

I
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I Figure 2-9: Covariance Density of the Process Used in Fig. 2-8

2.3.5 Simple Inhibition Process [ Hard-core Process ]

The alternatives to the Poisson processes described in Section 2.3.3. and 2.3.4. share

a tendency to produce aggregated patterns. Regular patterns arise most naturally by the

imposition of a minimum permissible distance, 8, between any two events. For example, as

Matem (1986) described, assuming a random point representing a cell, specifically the core

of the cell, then each point must be surrounded by a certain region where no other point can

exist. Processes of this sort, which incorporate no further departure from complete spatial

randomness, will be called simple inhibition ( or repulsion ) processes (or hard-core

processes). The packing intensity of a simple inhibition process is defined as :

r= X, / 4 (2.25)

where X is the intensity. Thus, "r is the proportion of the plane covered by non-overlapping

discs of diameter 5, or the expected proportion of coverage for a finite region A.

U Matem (1986) described two types of simple inhibition processes,
1. A Poisson process p is thinned by the deletion of all pairs of events a distance3 less than 8 apart. That is, if two events have a mutual distance less than 6,

both of them are deleted. The probability that an arbitrary event survives is
therefore exp( -7tp8 2 ), and the intensity of the simple inhibition process is,I
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X=pexp(-pb2 ) (2.26)

2. In case of a dynamic scheme, the events of a Poisson process are marked with
times of birth and an event is removed if it lies within a distance 5 of an older
event. An expression analogous to Eqn (2.26) can be obtained, but only byignoring any consideration of whether or not the older event in question has
itself previously been removed.

Recognition of this last aspect leads to a simple sequential inhibition process, defined

on any finite region A as follows. Consider a sequence of n events xi in A and let d(x,y)

denote the distance between two points x and y. Then,
1. Xi is uniformly distributed in A.

2. Given (xi =x,, j= 1, - ,i-I }, xj is uniformly distributed on the intersection of

A with {y;d(y,x ) ! ,j= 1,. ,i-1 I.

Simple sequential inhibition is parameterized most naturally by its packing intensity,

,=nit62 /4A, where n is the number of events. Note that if too high a value of t is

prescribed, the sequential procedure may terminate prematurely. The maximum attainable

packing intensity is a random variable whose distributional properties appear to be largely

intractable. Stoyan & Stoyan (1985) modified Matem's two models by considering random

hard-core distances. Fig 2-10 shows an example of the simple inhibition process.

2.3.6 Thinned Process

A thinned point process is defined by a primary point process { No(dx) ) and a

thinning field (Z(x)), which is a stochastic process with realized values 0 < Z(x)) _ 1 for all

x. Given realization of I No(dx) ) and I Z(x) ), the events xi of I N0(dx) ) are retained,

independently, with probabilities z(xi), and the corresponding realization of the thinned

point process ( N(dx) I consists of the retained events of ( N0(dx) J.

The second-order properties of I N(dx) ) are obtainable from those of I No(dx) I and U
Z(x) 1. In particular, in the stationary, isotropic case, let p and y(t) denote the mean and

covariance function of I Z(x) }. Then the second-order intensity function of (N(dx)j is

?'2(t) = X02(r) { yIt) + p 2  (2.27)

I
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Figure 2-11: An Example of the Thinned Process I
2.3.7 Soft-core Process

If there is an interaction between the points, then, it may not be "hard" or abruptly I
ending, but "soft" or continuously decreasing. In contrast to the hard-core process ( i.e.,

inhibition process ), the interaction of points is such that the inhibitory forces increase

continuously with decreasing inter-point distance (Stoyan, 1987). Let a stationary Poisson

process of intensity Xb be given. Its points get independent marks which are distributed I
I
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according to the continuous distribution function F on [0,oo). Then the initial point process

is thinned as follows. A point x with mark r(x) survives if and only if there is no other point

y with mark r(y) such that ;

1. x is in the circle centered at y with radius r(y)

2. r(y)> r(x).

If F is discontinuous, then the points get an additional independent mark u uniformly

distributed on [0, 1]. If r(x) = r(y), then condition 2. alone is replaced by u(x) > u(y). Of

course, the thinned point process is stationary and isotropic. Its intensity X is given by

X= bPr (2.29)

where pr is the probability that a point of the basic Poisson process is retained. It satisfies

p r=fexp(- bV((s))ds (2.30)

Here V(s) is the volume of the three-dimensional set M(O,s), where for x = (x 1, x2 )

M(x,s)= (( 1] q (4-XI)2+(7j -X2 )2 < F-t( ),

S<: < 1 ) (2.31)

F-1 denotes the inverse of F. The product-density p(r) = .2g(r) is given by

b (r) =X2 k(r) (2.32)

where k(r) is the probability that both members of a point-pair of distance r of the basic

Poisson Process are retained. It satisfies

k(r)=2J I , exp(-XbV(rst))dtds (2.33)

Here V(r,s,t) is the volume of M(0,s) u M(r,t), where r = ( r1, r2 ) is a point of R2 with

distance r to origin 0. T(s) is the set of all real numbers t in [ s, ] with ( r,, r2, t ) 9 M(0,s).

I Fig. 2-12 is a pattern of beadlet anemones on a rock in which the positions and sizes

of the anemones are indicated. Stoyan ( 1987 ) used a soft-core process when he analyzed

this pattern.

I
I
I
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Figure 2-12: An Example of the Soft-core Process, After Upton & Fingleton (1985)

I
2.3.8 Discussion

We showed that our mapped pattern ( Fig. 2-1 ) does not follow the CSR assumption

using both the inter-event distance test and the nearest neighbor distance test. We checked it

with the second moment measure and it also shows rejection of a CSR. To find a proper

model, we discussed various possible point process models, including a homogeneous i
Poisson point process model, which can be applied to rock fracture modelling.

If we think of the large scale, the rock fracture model based on point processes can be

perceived as stationary (Ripley, 1988). In such a case, CSR would probably satisfied.

However, if we confine our interests to a rather small portion of the rock surface, the

I
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pattern is probably nonstaticnary. It is in situations like this where the one of theI nonhomogeneous models, which were discussed above, will have to be used. We will now

i examine if some of these models can represent patterns such as traces in Fig. 2-1.

I
I
I
I
I
I
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Chapter 3

APPLICATION OF POINT PROCESSES TO

ROCK FRACTURE MODELING I
3.1 Introduction U

Many fracture modeling studies choose a homogeneous Poisson point process as a

basic assumption when generating mid-point patterns. In Chapter 2, we tested the

randomness of the mapped pattern (Fig. 2-1) with three methods and concluded that it did

not follow the homogeneous Poisson point process. Hence, we need to find an alternative I
model which has non-random properties. In our case, the inhomogeneous Poisson point

proce'-;=s and doubly stochastic point (Cox) processes seem to be suitable alternatives even

though no clear rule exists as to which of these alternatives should be chosen. 3
In the following, we will consider the above mentioned two alternative models and

discuss fitting the proposed model to the mapped data. I
3.2 Inhomogeneous Poisson Point Model I

As discussed in detail in Section 2.3.2, when using the inhomogeneous Poisson I
process, we should know an intensity function X(x,y) in advance. If we have an intensity

function X(x,y), we can generate a point pattern with an Acceptance / Rejection ( A/R )

scheme as proposed by Lewis & Schedler (1979). This A/R scheme consists of simulating

a Poisson process on a region A with intensity X, equal to the maximum value of X(x)

within A and retaining an event at x ,,ith probability X(x)A 0o. The A/R scheme plays an I
important role when we generate a point pattern, especially a non-homogeneous pattern.

Fig. 3- t is a mid point representation of our trace map of Fig. 2-1. Considering sULh a I
I
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pattern, it is hard to find the intensity function X(x,y). With regression, we can only find

the y-directional intensity function like X(y) = exp( 0.36y - 0.028y 2 - 3.25 ) since significant

clustering as well as inhibitory behavior exists simultaneously in the x-direction. To derive

an x-directional intensity function, we use a kernel function f. Usually f is a symmetric

probability density function, for example the normal density function, with the conditions,

f(x) =f(-x)
f f(x)dx= I

f-f(x) x2 dx = 1 (3.1)

The kernel estimator with kernel function fis defined by

Sn x-Xi(3.2)() i=- I h ( )32

where h is the window width and often called the smoothing parameter or bandwidth.

The intuitive properties are as follows. Just as the moving average (see Silverman

(1986) for details) can be considered as the height of the histogram (i.e., frequency)

centered at the observation, the kernel estimator is a sum of bumps, where the window

width h determines their width. This property of the kernel function, therefore, makes an

intensity variation easy to derive. Fig. 3-2 shows a schematic representation of the kernel

estimates. Provided the kernel f is everywhere non-negative and satisfies the condition,

Eqn (3.1), it will follow at once from the definition that k will itself be a probability

density. Furthermore, k will inherit all the continuity and differentiability properties of the

kernel f, so that if f is the normal density function, then X will be a smooth curve having

derivatives of all orders. Particularly, one of the edge-corrected kernel estimators of X(r)

with efficient kernel functionf 6 is (see Fiksel, 1988)

i&) f 8 (Ix-y-r) (3.3)J~~ ~ y'~r= x.2ntx-yja{Wxr-WY}
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Figure 3-2: An Example of Schematic Kernel Estimate with Window Width 0.4

where, the summation goes over all points x and y of the pattern in the window of

observation W. I I is the Euclidean distance ; f8 is a kernel function ; W, is a set of all points

z of the plane having the form z = w + x, w e W ; a = area; 6 is a band-width parameter; r

is a distance between two points and

3_ r2

0 otherwise (3.4)

The above kernel function is a general form of the Epanechnikov kernel (Epanechnikov,

1969). Though efficient, it is not easy to implement. However, a kernel estimator using

normal distribution function provides a good estimate of the x-directional intensity function

X(x). Our "dge-corrected kernel function is shown in Fig. 3-3.

We now have the intensity function both in the x- and y- direction. Hence, we can
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simulate the inhomogeneous Poisson point pattern with the aforementioned A/R scheme.

Fig. 3-4 is one of the simulations of the inhomogeneous Poisson point process assuming a

normal distribution as a kernel function. Comparing this simulated inhomogeneous Poisson

point pattern with our mapped pattern ( Fig. 3-1 ), we see some similarity. To check the

inhomogeneous Poisson point process with our mapped data, we use the inter-event

distance, nearest neighbor distance and second moment procedure (see Fig. 3-5 to Fig. 3-7

). From these figures, we see good correspondence of our mapped pattern with the

inhomogeneous Poisson point process. Again Monte-Carlo tests for each the above three

procedures show satisfactory results, also.

I
3.3 Marked ( or Weighted ) Point Process

Before proceeding to the doubly stochastic point process, we introduce the marked

(or weighted) point process. Fig. 3-8 illustrates an example of a marked point process where

a point can be further characterized either by an x-mark or by an o-mark. Since a point

process itself does not give us any information on trace lengths or orientations, a marked

point process can be used when considering additional characteristics of fractured rock if

these are not too complicated. These characteristics can be included if we give marks or

weights to each point assuming that the mark represents a trace length or orientation.

Considering mark-correlation functions and the cross-mark-correlation functions,

I which are similar to the second-moment properties, we can obtain information on marks

I such as trace length correlations and orientation correlations. Assume that there are two

marks for each point such as the I-mark for a trace length and the m-mark for an orientation.

Now calculate the mean of the product of the I-mark of the point in one of the infinitesimal

areas and of the nt-mark of that in the other one. This mean, denoted by Elm(r), is written as,I
1
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Em(r) = kim(r) X2 g(r) dF1 dF, (3.5)

where. ki, , cross-mark-correlation function, is a conditional mean of the product of the

i-mark and ni-mark of the members of a point-pair of distance r; X is intensity ; dF, and dF2

are infinitesimal areas ; the radial distribution function, g(r), is related to the second-order I
property K by

g(r)= K(r)/2m•  (3.6) I

The definition of mark-correlation functions k,, and kmm is analogous. The statistical I
determination of k,,,(r) is as follows.

1. Estimate the edge-corrected quantity pm(r) given by



I
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p,(r) = km,,,(r) p(r)
)im(rp x f(jx-y I-r) 1(x)m(y) (3.7)

[xx. (xIlLv m(y)J 2 I x-yI a I xn W Y

2.here, l(x) is the -mark of x, and m(y) is the m-mark of y.A

2. Compute kt,,(r) by
A^ A

kcalc =. ,(r) / (r) (3.8)

here, p5(r) is the same as the edge-corrected second-moment and can be
calculated using kernel estimator.

3. Transformed correlation functions are

gm,,(r) = k,m(r) 12 ,

gj,(r) = km(r) / h7 (3.9)

where, 1 denotes a mean -mark and so on. These functions tend towards 1 if r
goes to infinity.

Fig. 3-9 shows trace length correlations of our mapped pattern. As can be seen, this

function approaches 1 as distance increases and has an approximate value 1.8 near the

distance 0.2. From this result, we conclude that traces are heavily correlated with each

other when they get closer, and at greater distance, they become independent.

3
3.4 Doubly Stochastic Point ModelI
3.4.1 Doubly Stochastic Point Process

SI In this section, we use the doubly stochastic ( Cox ) point process for our rock

fracture model. The original idea of the Cox process (see Section 2.3.4) is as follows,
1. 1A(x) : x e R2) is a non-negative-valued stochastic process.

2. Conditional on (A(x) : x r R2), the events form an inhomogeneous Poisson
process with intensity function X(x).

The point process is stationary if and only if the intensity process ( A(x) ) is

stationary, and it is isotropic if and only if the intensity process is isotropic. A convenient

I!
I
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and expressive terminology is to refer to the Cox process driven by ( A(x) [. First- and

second-order properties are obtained from those of the inhomogeneous Poisson process by

taking expectations with respect to I A(x) }. Thus, in the stationary case, the intensity is,IX=E[A(x)] (3.10)

Also the conditional intensity of a pair of events at x and y, given I A(x) ), is A(x)A(y), so

that
X2= E[A(x)A(y) ](.1

In the stationary, isotropic case this can be written as
X,(x,y )=X2+y(t) (3.12)

where
y(t)=Cov ( A(x),A(y) (3.13)

and t is the distance between x and y, y(t) is the covariance density of the point process.

A simple example of the Cox process is to use the bivariate kernel function as an

expansion form of the univariate kernel function which was used in Section 3.2. in the

inhomogeneous point process. Assume h(.) is a bivariate probability density function and

define an intensity process ( A(x) I such that

A(x)= h(x - Xj)  (3.14)
i=l

for a non-negative value I, where the Xi are the points of a Poisson process. One of the

possible ways to construct the bivariate kernel function is to use the bivariate normal

distribution function. Thus the Cox process driven by Eqn (3.14) is also a kind of Poisson

cluster process. The above mentioned kernel function method can replicate the local

pattern of the fracture sets, but if we need to extrapolate a regional pattern from the local

mapped data, this method becomes impractical since the kernel function needs actual data

sets and, in addition, simulation of the pattern is limited to a region where the data sets are

available.

One of the promising ways to construct a regional pattern from the mapped data is to

I
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use the spectral density function which is frequently used in simulating the random function

(see Shinozuka & Jan, 1972). We will discuss this function in the following subsection. I

3.4.2 Spectral Density Function I

As mentioned before, the main efforts in the doubly stochastic Poisson point process

should be directed to finding the planar intensity function X(x). In Section 3.2, we adopted

the inhomogeneous point process with one-dimensional (or univariate) kernel functions and

showed the corresponding modeling process. The other way to estimate the intensi'y

function is to use the spectral density function ; this is useful if the explicit form for the I
intensity measures is hard to obtain. I

Briefly saying, what we want to find with spectral density functions is the intensity

function. X(x,y). We assume that the intensity function can be derived from the x- and y-

directional intensity measure since the mid point pattern in Fig. 3-1 shows clustering

behavior in the x- and y-direction, and we also assume that each directional intensity

measure is independent of the other. Then we have,

AA

X(x,y) = X + '1V X,(x) X1:.y) (3.15)

where, X is a mean value of the intensity measure and, in our case, the sampling average

can be used. In other words, the intensity of a region is assumed to follow a homogeneous

Gaussian distribution. Since the sampling average can be obtaine.d from data, we need to I
enumerate the functions X.(x) and X Y(y).

To find X (x) and X,(y), we adopt the spectral density functions. Before employing

spectral density functions for each direction, we calculate some additional properties.

1. 'Modify the second moment in order to include the directional characteristics.
The definition of the second moment measure K(t) is

K(t)-=-- E[ no. offurther events within distance t

of an arbitrary event ] (3.16)

or equivalently,

I
I
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X K(t)=J (X2(x)l/ } xdxdO

=2 X-' Jo X (x)xdx (3.17)

conversely,

,(t) = X2 (27rt)- 'K,(t) (3.18)

Similarly, we can define a directional second moment measure as

K(t,0) = X-I E[ no. of further events within distance t and
within angle 0 of an arbitrary event] (3.19)

or

?,(t,0) = X2(20t)-I K'(t,0) (3.20)

In our case. 0 is measured between the line connecting two selected points
and the x-axis, and is assumed to vary within 0 to 10 deg. for the x-direction
and 90 to 100 deg. for the y-direction. Fig. 3-10 shows the directional
second-moment measure for the x- and y-direction, as well as the K(t) values
of the mapped pattern and the homogeneous, isotropic case. From Fig. 3-10,
we see the clustering behavior in the y-direction and short-range clustering
behavior in the x-direction since the second moments of these two cases are
greater than that of the homogeneous, isotropic case. However, as relative
distance between points increases, we can see the inhibitory behavior along
the x-direction. This behavior can be seen in Fig. 3-10, also.

2. Find directional covariance density for each direction. A directional
covariance density function can be defined as

y(t,) = ,(t,0)- X2 (3.21)

Fig. 3-11 shows the calculated covariance densities for each direction. For
comparison, a covariance density for the non-directional mapped case is also
plotted.

3. Calculate correlation function p(t,9) from

y(tO) = p(tO) Y(O) (3.22)

where y(0) is a variance of the intensity measure. If the pattern is
homogeneous and isotropic, this value becomes y(O) = X ( 1 - X).

4. For later use, derive an exponential form for the correlation function. From
curve fitting, we estimate the x-directional correlation function as exp(-0.33x)
and that for the y-direction as exp(-O. ly). Fig. 3-12 shows the exponential
curve fitting form of the correlation function. Since t is a distance between
two points ( in our case, a point represents the mid point of a trace ) and the
correlation function p is an even function with respect to t,

p(1,0) = p(-,0) (3.23)

In the general case, we assume that the n-fold Fourier transform of p(t) exists

___________________________________________________
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(Shinozuka & Jan, 1972). The spectral density function, S(o), of the intensity measure is

then defied as

S(0) _I p(t) e-iw"tdt (3.24)

where. co is the frequency ( wave number ) vector and ow is the inner product of co and t.

Then from the properties of Eqn (3.23),

f Jp(tsin((o-t)dt=o (3.25)I

and from Eqn (3.24).

S(o) = S(-O) (3.26)

Now, if we confine our interests to a mapped pattern, n becomes 1, S(co) becomes SX(wo) in

I the x-direction and Sy((o) in the y-direction. Then x-directional spectral density function,

Sx(o). becomes

SS 2(J) px(t)cos(o.t)dt (3.27)

and y-directional spectral density function, SY(0o), is

I S,(o) =7 - p(t)cos(o).t)dt (3.28)

I and is real.

Since we have an exponential form of the correlation function, we can obtain a

simplified form of Eqn (3.27) and Eqn (3.28). That is, if px(t) = e- tha, then S,(co) =

I a/r(l+coa2 ). Our spectral density functions according to this form are plotted in Fig. 3-13

and Fig. 3-14.

I As a result, we can estimate the x- and y-directional intensities as follows.
1. Consider the x-directional intensity function, X,(t), and assume that the

spectral density function becomes negligible outside the range (@-, ) ( is
a cut-off frequency)

I
I
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2. Divide the area under the spectral density function into small areas Sx(o)Ao

at equal frequency intervals -. 1

3. Now define the x-directional intensity function, X,(t), as (Augusti, et al.,

1984)
N

Xx,(t)= ° [2S (- )+iAo)Ao]1l2cos[(-+iAo)t+)i] (3.29) 1
here, if angle 4, is a realization of a random phase angle * i, uniformly
distributed over (0,2n), Eqn (3.29) becomes an ergodic periodic random
function X J(t), with period T = n / 5.

Fig. 3-15 shows the schematic procedure to calculate the spectral density function.

In our case, we assume that the cut-off frequency is t/2 and the number of

subdivision N is 20. The same procedure can be applied to the y-directional intensity

function X (t). With the aforementioned procedure, we can find the intensity function, Eqn

(3.15), in a region which is a realization of the Cox process.

Simulation of the Cox process driven by the spectral density functions can again be I
done with the Acceptance / Rejection scheme which was discussed in Section 3.2. But in 3
this case. the A / R process should be used twice for the x- and y-direction (two-phase A/R

scheme) because the directional intensity function derived from the spectral density

function may have negative values. One of the simulated patterns is shown in Fig. 3-16

where we can see the clustering behavior of the simulated point pattern which is similar to I
that in the original pattern (see Fig. 3-1). Again, the second-moment analysis as well as the

Monte-Carlo test show that the Cox model fits our mapped pattern ( Fig. 3-17).

I
I
I
I
I
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3.5 Conclusion

I

We conclude fromn the above results that :
I 1. Our mapped pattern (Fig. 2-1) does not follow a homogeneous Poisson point

pattern even though our case has a rather simple fracture pattern.
2. An inhomogeneous Poisson point process driven by a kernel function method

is proposed as a model for our mapped pattern. However, the kernel
functions summarize all the variations on the x-axis and, therefore, intensity
variations in the y-direction cannot be expressed.I
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3. Nevertheless, using a kernel function with normal distributions, shows the
regional inhibitory behavior in the x-direction. In the general case, one could
further expand the kernel function to two-dimensional bivariate kernel
functions ; this is not done because the Cox process (see 5 below) provides a
better approach.

4. Trace lengths are correlated as they get closer. That is to say, a clustering
mechanism among traces can be predicted.

5. With the doubly stochastic ( Cox ) process, we are using a directional second-

moment measure and find the directional correlation function. Also, we adopt
a spectral density function with which we are able to transform the random
function into the frequency domain. From the assumption of the stationary
Gaussian random distribution, we derive the intensity distribution and
perform simulations using a two-phase A / R process. The resulting doubly
stochastic point pattern also shows a directional distribution. The doubly
stochastic point process model fits the mapped pattern with satisfactory
goodness of fit both using the second-moment analysis and using the Monte-

Carlo test.
6. As just stated, using a doubly stochastic process, we transform the intensity

measure into frequency domain and derive a spectral density function. This
means that, once we have a spectral density function for a particular area, we
can directly reproduce a similar pattern in a larger area. This is an important
advantage of the Cox process compared to the inhomogeneous Poisson point
process.

7. From the point of view of rock fracture modelling, we prefer the doubly
stochastic point process model to the inhomogeneous Poisson point process
model. This is so because the doubly stochastic point process model is based

on the correlation measures of the mapped data while the inhomogeneous
Poisson point process model is not.

I
I
I
I
I
I
I
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Ch.,pter 4

FIBER (or LINE - SEGMEN r) PROCESSES

4.1 Introduction

As described in Chapter 1, the fiber process is required for fracture geometry

modelling if the traces have complex inter-actions such as intersections. :n this chapter, we

only consider, for the time being, two dimensional cases. Applications of the fiber

processes to two-dimensional planar -ock surfaces can be deduced from the three-

dimensional Baecher model (Baecher, et al., 1977) or can be found in Long, et al. (1982).

However. these models assume that the mid point of each trace follows a homogeneous

I Poisson point process with a lognormal or an exponential trace length distribution and with

a uniform ( or uni-directional ) orientation distribution. In some cases, these assumptions

are not appropriate and some modified models have been developed. In the following, we

* briefly introduce these recent developments in modeling of rock fractures in two

dimensions and discuss their feasibility. Also, a new rock fracture modeling scheme which

accounts for sequential generation of fractures is proposed and a new method to evaluate

the trace length distribution function is considered.

4.2 Recent Trend in Fiber Modeling

The following developmcnts of two dimensional fracture configuration modeling

Ihave taken place in the recent past

I
I
I
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4.2.1 Homogeneous Poisson Fiber Process ( Baecher ) Model

This model is identical to that of the homogeneous Poisson point process model 1
except that it includes fiber length distribution and orientation distribution functions.

Assuming more tha. onc' fracture set, each set of fractures is generated independently using

a homogeneous, isotropic Poisson point process. Then the individual sets are

superimposed. The location of each fracture in a set is designated by assuming that the

centers of the fractures are randomly distributed ( Poisson type ) within the generation

region. For each set, a density is supplied to determine the total number of fracture centers

to be generated. The orientation of each fracture in a set is given next. The length of each

fracture ik chosen independently. Fracture lengths within a set are assumed to be

distributed lognonnally or exponentially. As a mark or weight, apertures can be assigned to

each fracture with assumed distributions ( e.g., lognormal distribution ). Fig. 4-1 shows I
schematic procedures for constructing the homogeneous Poisson fiber process.

Some mathematical characteristics for the homogeneous Poisson fiber process can be

found for each fracture set (see, Parkei & Cowan, 1976, Cowan, 1979 and Stoyan, et al.,

1987) ; I

1. Intensity of fibers ( LA ) The total length (D(w) of all fiber pieces in a plane W can be

measured easily if an image-analyzer is employed, or if the fibers are all segments or i
straight lines. An unbiased estimator for LA is given by

LA = D(14)/V,(W) (4.1)

where, v 2 is a Lebesgue measure on R 2. Otherwise, intersections with sampling lines

or circles can be used. 1
2. Second-order Characteristics ( K(t) ) Define LAK(tox) analogous to that of a point

process. LAK(t,at) is the mean total fiber length in a sector with radius t and angle ot

I

J I I
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Figure 4-I: Schematic Procedures for Constructing the Homogeneous
Poisson Fiber Process Model ( After Long, et al., 1982 )

centered at a typical fiber point. If the fiber process is motion-invariant, the typical fiber

point can be explained by Palm distribution (Stoyan, et al., 1987). The second-order

characteristics of the motion-invariant Poisson fiber processes are defined as

K(r) =LA E [ total lengths of further fibers within distance tof
a typicalfiber point 1 (4.2)

I and, especially,

* If we consider the Poisson infinite line process with assumed fiber intensity,

K(r)= r 2 +2r/LA, I 0 
(4.3)

This sum has two main components ; 2r/LA is the contribution from the infinite
line containing the typical point and tr- is formed from the remainder of the
process.
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" If we consider the Poisson constant unit segment process,

K(r)= 7r2+2r(I1- )/LA if r< 1

= M2+ I/LA if r > 1 (4.4) 3
" If we consider the Poisson segment process where segments have random

lengths,

LA K(r) LA r2 +fxdF(x) 2r- dFo(x), r > 0 (4.5)

where i

Fo(x)= ZdF(z)/m, x>_O

F(z); length distribution finction (4.6) I
in ; mean length I

Even though the above cases have explicit forms, applications of these characteristics

to mapped data are not easy since, from a practical point of view, the typical fiber point lies i
at random on a fiber. Hence to test the homogeneity of given mapped data is almost

impossible. Here, the meaning of the typical fiber point is different from that of the mid

point in that the typical point is an arbitrary point in a fiber and is only used when

calculating the second-order characteristics, whereas the mid point is a fixed point which

becomes a center of a fracture. Stoyan, et al. (1987) suggested approximate test schemes by i
introducing a test system of parallel lines or of a Poisson line process. However, this scan

line method is also impractical because the spacing of the test system or the fiber intensity

of the Poisson line process influence the second-order characteristics of mapped data. This

particular property of the fiber processes makes a homogeneous Poisson fiber process

model hard to check against mapped data.

In rock fracture modeling, Some modifications appeared after the original

homogeneous Poisson fiber ( two-dimensional Baecher ) model. Dershowitz (1988)

showed an Enhanced Baecher Model by using a termination probability. If the traces

intersect the pre-existing traces, these latter traces are terminated at the intersection point
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with given probability. The termination probability is a ratio of the termination points and

the total number of traces in a map. Dershowitz also suggested a non-circular fracture

shape such as polygons and ellipses. Fig. 4-2 shows an Enhanced Baecher model with non-

I circular fracture shape.

I
I

I
I

I
I
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I
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4.2.2 Parent - Daughter Model ( Witherspoon and Long, 1987)

Witherspoon & Long (1987) chose a Poisson cluster process (see Section 2.3.3.)

when they modeled fractures in swarms or zones. They worked in three dimensional space

assuming disk-shaped fractures, but a two dimensional parent-daughter model can be

deduced from their work. The location of the parents may be purely random, i.e., a fixed I
rate Poisson process, or it may be a regional variation in the density of the parents. Once

the parents have been determined, the daughters are found at some distances from the

parents with certain distribution ( e.g., Gaussian ). Fig. 4-3 is a three dimensional parent-

daughter model. The inplementation of the model requires knowledge of the distribution

of the daughters per parent and the daughters around the parents as well as the density of I
the parents.

There are, however, certain problems when using this model. First, several swarms

may overlap. Thus, it will be uncertain as to which parent a trace daughter belongs. Hence, 3
dividing the overall density into that of parents and daughters becomes ambiguous.

Second, the parent - daughter model, in most cases, shows clustering behavior near the I
parents and inhibitory behavior at greater distances from the parents according to a

specified distribution form of daughters. Thus a fitting procedure for a model is not easy to

apply.

4.2.3 Fractal Model

The usual method when considering fractal geometry is to use the fractal dimension

as a main tool. If the given data follow linear relations between the number of data and the I
sampling size in log-log plot, the fracture network is a self-similar fractal and the fractal

dimension is the value of slope in log-log plot whether the data are the trace lengths (see

Barton & Larson, 1985) or the polygons made by trace intersections (La Pointe, 1988).

But, the fractal dimension itself does not give us any information on the model and there is

little progress in modeling rock fractures using fractal geometry. I
I
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I

I\

I "

Figure 4-3: Parent-Daughter Model in Space, after Chiles (1988)

I Chiles (1988) suggested one- and two-dimensional simulation methods with fractal

geometry. But, as he mentioned, it is not clear whether the simulation procedure is related

to the fractal dimension or not.

I
I
I
I
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4.2.4 Branching Model ( Watanabe, 1986 ) I

This model is probabilistic rather than stochastic as far as generating the branches is

concerned. The main idea is to calculate the branching probabilities at each branching

point and check the results against the total existing length. As seen in Fig. 4-4, each

fracture is divided into many branches of constant length Lo. Then, step numbers are I
assigned at each branch. Using branching probabilities P,, clustered fractures are generated.

I
Cluster of

(a)

Terminal branch m

L 0  12 11

Step number (b

I
Figure 4-4: Branching Model of Watanabe (1986)

I
I
I
I
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4.2.5 Hierarchical Model ( Conrad & Jacquin, 1975)

Conrad & Jacquin (1975) used the terminology 'hierarchical' when they simulate

fractures by using Poisson-type polygons and Boolean-type fissures (see also Serra, 1980).

Their hierarchical model which was applied in rock fracture modeling is used to explain the

sequential generation of a Boolean model in a domain. The concept is as follows.

1. The major network, which we name the first set, is a network of Poisson
straight lines ( or the realization of the Poisson line process ) of density
X,(dcz) determining convex polygons : the matrix blocks. The infinite lines in
Fig. 4-5 represent the matrix blocks.

2. Intersect the interior of each polygon with a Boolean diagram of segments
with density X, and distribution function F(dl, d(), i.e., in each polygon we
have a realization of a single Boolean diagram of segments in which their
lengths are extended to the perimeter of the polygon. In two distinct polygons
the Boolean diagrams are independent and have the same characteristics. The
finite segments in Fig. 4-5 are the realization of the Boolean diagram of
segments.

3. The matrix block generated by the above two steps is defined by the first set,
but the second set is important when describing the minor network.

4. The parameters introduced in this model are

9 density X (da) of the Poisson line process

o density of the Poisson segment process k
* distribution function of the primary grain F(dl, dco) which represent the

length and orientation of segments.

Fig 4-6 shows a simulated rock fractures network using the hierarchical model of

Conrad & Jacquin ( 1975 ). This model differs from the Veneziano model (1979) in that

I the former considers polygons made by Poisson line processes as rock blocks and

remaining fibers made by a Boolean diagram of segments as rock fractures, whereas the

latter one, according to the persistence parameters, chooses some of the polygons made by

3 Poisson plane processes and Poisson line processes as rock blocks.

I

I
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I

I
Figure 4- : HieRcFrahclumoel Ntorfte Conrad Jacquin (1975) I
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4.2.6 Percolation Model

In percolation theory, a medium is considered as an infinite set of sites and a bond is

assumed to be a path which connect certain pairs of sites. Therefore, two different

approaches are possible when modeling fracture systems with percolation theory. The one

is site percolation theory by Robinson (1983). In this model, segments of specified length

and orientation distributions are uniformly generated in a square. By way of the trial and

error method, one can find the critical value of segment intensity and length scale with

3 which percolation is to occur. Thus we can idealize fracture systems in a plane.

The other is bond percolation by Watanabe (1986). Assume an original network

I composed of many sites linked together by bonds. The network is essentially defined by

the number of bonds z initiating from each site. Next, by taking out some of the bonds

from the original network, the modified networks can be constructed. In this course of

U modification, the decision as to whether each bond may remain or be removed is

independently established using a fixed existence probability Pb, where Pb can be calculated

3 from a map or can be assumed. If Pb is large, many bonds remain and some large clusters

linked with each other will remain.

4.2.7 Crack Tessellation Model ( G(ray, et al., 1976)

N One of the interesting models of random tessellation is to adopt the crack model.

3With some modification, a non-homogeneous Poisson model can be developed. A marked

point process 0 is constructed on the plane, each point of 1 being marked with the

orientation of a line. The edges are produced by a growth process : each edge starts at one

of the points and grows in the two opposing directions specified by the marks at a constant

rate. Growth in a particular direction continues until further edges are hit. This process is

3 reminiscent of crack growth.

I
I
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4.3 Proposed Hierarchical Model

4.3.1 Background

The original hierarchical model which was applied in rock fracture modeling (Conrad

& Jacquin, 1975) was used to explain the sequential generation of a Boolean model in a

domain. We are now trying to modify the idea of the original hierarchical model and apply

it to the rock fractures, where the rock fracture is assumed to be generated by geological

sequences. When we deal with the modified model, we assume that the fracture generation

sequence is known apriori. We can, therefore, model the hierarchical fracture sequence as

follows.

1. We divide the fractures into several groups according to the geological
history. For simplicity, we assume that there are two sets such as set 1 and set
2.

2. From the assumed or calculated intensity, orientation and trace length
distribution, generate set 1 of fractures on the basis of the point process.

3. Do an independence test between set I and the set 2. For this, we replace a
trace by a point ( i.e., mid point ) and introduce the bivariate point processes.
If we find that these two sets have no dependent relations, ignore step 4.

4. Before generating set 2, measure the interrelations ( i.e., correlations )
between two sets, where each set of traces is equivalent to a set of points. I

5. if there are no such correlations, set 2 is obviously independent of set 1, and
the superimposition of set 2 is possible. If we find the correlations between
two sets, the A / R procedure can again be used to simulate set 2. If we want
to impose a termination of set 2 when it crosses set 1, we can define a
termination condition at this stage.

6. Iterate step 2 to step 5 according to the number of fracture sets.

In the following, we will discuss our proposed hierarchical model in detail.

4.3.2 Independence Test

Assume that the process consists of two sets of traces classified as type I events and

type 2 events by their geological history. If the mid points of each set are distributed

independently of each other, we can superimpose traces set by set. But if there are

I
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correlations between the two sets, we need to include these correlations into our

I hierarchical model. For this, we use the bivariate point process when performing the

independence test.

Extension of the univariate point process ( Chapter 2 ) to the bivariate case is

relatively straightforward and will now be discussed. Define a bivariate point process which

generates events classified as type j for j = 1, 2. First-order properties are determined by

I each intensity.

E[N.(dx)]
X.=lim ( ) (4.7)

1 A I-O 0 IdxI

I and second-order properties are

E [N,(dx ) I E [N3(dy ) 1i ~..(u)= lim ( .8
jdxjjdyjl 0 ( _ dxlldy

where the infinitesimal regions dx and dy are centered on points x and y a distance u apart.

Stationarity and isotropy imply that Xj,(u) = X.i(u).

The bivariate extension of second moment K(t) can be defined as

K1 2(t) = X 2E [number of type 2 events within distance t
of an arbitrary type I event] (4.9)

To relate the K, 2 (t) to the corresponding X1I2 (U), note that the conditional intensity of a type

2 event at a specified location a distance u from the origin, given a type 1 event at the

origin, is X 1 (u) / X,. Like in the univariate case,

K12(t)=2n(X 2 X)-' fo X,2(u)udu (4.10)

It follows that K12(t) = K2I(t).

Cross-covariance densities are defined as

I Y12(t)= X, 2(u)- X1 X,2  (4.11)

In practice, if we assume two independent components, type I and type 2, the dual

I
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intensity of a type I event and a type 2 event at any two specified locations is X 1X2. In other

words, the second-order intensity function X12(u) assumes a constant value XAX2 for all

distance measure u, then Eqn (4.10) gives

K 12(t)=t t 2  (4.12)

and Eqn (4.11) becomes zero.

Here, independence is analogous to complete spatial randomness for a univariate

pattern in that it provides a convenient reference point for the characterization of the more I
interesting bivariate structure. Generally speaking, we say that components I and 2 are

positively (negatively) correlated at range t, if the derivative of K 12 - itt2 with respect to t is

positive (negative) (Diggle, 1983).

4.3.3 Correlation Measure

As mentioned before, if two sets of traces are not independent, correlation measures

between sequential steps become important since two sets of traces are inter-correlated and, I
thus, there exist correlations which need to be included when using the hierarchical model.

Here, we will discuss two basic ideas which can be used when calculating the correlations.

We can generate the hierarchical sequences of the two fracture sets by conditioning I
the mid points pattern of set 2 on the traces of set 1. This is done b'y using the line-kemel

function method for representing traces of set I and by using mid points for representing set

2. For use of a line-kemel function, we divide each trace into a set of segments in which all

segments have the same length. For each segment, the center point is obtained. Then we can

include the length effect of a fiber process by evaluating the line-kernel function over all 3
center points of set 1. The resulting line-kernel function can be visualized as a contour plot

around the fiber which has a peak value at the mid point of the fiber. This method requires I
complicated numerical work when calculating the distances between the mid points of set 2 3
and the evaluated center points of set 1. From the measurement of the distances, we have I

I
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k(t ITI)= fT Ii h (t,I) d L (I)

=C(a) [F(t I )+C 2 ] (4.13)

where, NOt,I) is a line-kernel function with segment length I and parameter a; C1(a) and C2

are the coefficients of the line-kernel function method. Once we have the conditional

distributions for the mid points of set 2 with respect to the fiber lengths of set 1, we can also

include the orientation parameter in the line-kernel function.

The other way to measure the correlations is to modify the nearest neighbor distance

method of Chapter 2. Here one uses the nearest fiber distance from the mid points of set 2.

3 Any position of a fiber can be chosen when calculating the nearest neighbor distance, and

this flexible position of the nearest fiber method makes it possible to include the fiber

I length effect in a correlation measure. Measuring the nearest neighbor distance, we have
A

(tITI)=C3(a)[G(tla)+C 41 (4.14)

where, G (tIY) is an assumed nearest neighbor distance function with parameter a ; C 3(a)

and C4 are the coefficients of the nearest neighbor method. The parameters and coefficients

of these two methods can be found if we use MLE for a given data set.

Stoyan & Ohser (1984) proposed another method to calculate the correlations

between two sets of fibers and developed a mathematical correlation formula for the fiber

processes which are based on the second-order characteristics. But their method uses a

scan line method when choosing a typical point and also requires measurement of the

Iintersection angle between a scan line and a fiber. Thus, estimation of the correlations is

further complicated.

I
I
I
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4.4 Trace Length Distribution Function I
Before we discuss the application of the hierarchical model, we need to develop a

trace length distribution. In general one knows that three sampling biases for trace lengths

exist when we adopt a scan line method ( Einstein and Baecher, 1983 ).

o Proportional Length Bias : Longer trace lengths have a proportionally larger
probability of intersecting the line and therefore of being sampled.

o Ceitsoring Bias : Many of the traces observed in the excavation run off into the
rock walls or the overburden, and cannot be observed in their entirety. Since
this censoring occurs with proportionally higher probability to longer traces,
the sample is biased toward shorter lengths and the extreme upper tail
disappears completely. If we assume exponential distributions, we have a
closed form for the mean trace length using maximum likelihood.

IML-  r (4.15)

I
where,/ i is a set of completely observable traces ( i = 1,...,r ) and is a set of
traces for which only one or neither end is observable ( j = 1,...,t ).

o Truncativ Bias : Traces shorter than some cut-off length are not recorded.

As a modification of this existing bias correction, we developed a new approach to

correct the first two biases :

The following Maximum Likelihood Estimators ( MLE ) can be used where a trace is

partitioned into three groups.

0 1 = UP ..... Ua • Trace lengths with both ends observable

* v= [ vI,...,vb : Trace lengths with one end observable

• w= { w 1,...,w} : Trace lengths with no eads observable

Now our MLE for the density functiun of trace length distributionf,(x) becomes

i l V illv I, { '.k- I ,(.') ) =a h C
f1 P [ I Lif,,IL( u,) [J P [v ILjlf,.,( vi) H] P [ WLklfwtk( wn) (4.16)

-I J.1t k=1

Here,

I
I
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P[u IL] X Jfx(x) (L -x) dx

Pfv'IL] ac 2fof(x)xdx+2Jf f(x) Ldx

=2Jmn(x, L )f,(X) dx

P[wILI cc Jf(x)(x-L)dx (4.17)

and

f,,(uj) a (L-u)f,( ui)

I IL(4'k) a 1 (4.18)

here, L is a window length of the map. Fig 4-7 shows schematic estimation of our MLE.

IW

I V

X(4,x) kcw(x

I U

I L

U Figure 4-7: Schematic Estimation of Trace length
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4.5 Discussion I
In this Chapter, we have shown various stochastic fracture models including a

homogeneous Poisson fiber process and proposed our hierarchical model in which 3
geological history of the fracture genesis can be represented. As was predicted, the

hierarchical model needs the fiber density function as well as length and orientation I
distribution functions for the sequential sets. We, therefore, have discussed the possible 1
measurement statistics of the independence test and correlation measurements in order to

find the fiber density functions. The main difference between this modified hierarchical

model and the existing models is the realization of the correlated behavior of the sequential

sets which is not fully implemented in the existing models. In addition, we developed a I
new technique to measure the mean trace length by utilizing MLE.

In the next Chapter, we will apply the above mentioned model and related statistics to

real mapped data and discuss the feasibility of our model. 3
I
I
I
I
3
I
I
I
I
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Chapter 5

APPLICATION OF THE HIERARCHICAL MODEL

5.1 Introduction

In applying the point process for modeling of fracture patterns, we have chosen a

simple mapped pattern (Fig. 2-1) and developed appropriate fracture models based on the

doubly stochastic point process and based on the inhomogeneous Poisson point process (see

Chapter 3 for details). On the other hand, if the mapped pattern involves complex

interactions among traces or fracture termination points, the point process is not an

appropriate method for modeling fracture patterns. A further step is therefore to introduce a

fiber process model, and to incorporate it in a hierarchical model. Fig. 5-1 is chosen as the

U mapped pattern (see Barton & Larson, 1985) to be modeled. It shows intensely fractured

zones and complex interrelations among traces. Fig. 5-2 is a digitized trace map of Fig. 5-1

without the intensely fractured zones (shaded in Fig. 5-1). For the use of the hierarchical

model, we divide the pattern in Figs. 5-1 and 5-2 into two characteristic sets. Set 1 is the

I group of fractures in which all traces have uni-directional orientations and have no common

intersection points with each other (see, Fig. 5-3), while set 2 represents the remaining

traces (see, Fig. 5-4) excluding, however, the intensely fractured zones (shaded in Fig. 5-1).

Incidentally, our assumption for the two sub-sets is identical to the classification used by

Barton and Larson (1985) who grouped the traces according to their apparent aperture

I width. The mid point patterns of the traces shown in Fig. 5-2 to Fig. 5-4 are shown in Fig.

5-5 to Fig. 5-7, respectively, assuming that the half length point is identical to the mid

point.

I
I
I
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Figure 5-i: Trace Map of PAIQO ( From Barton & Larson, 1985) I
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5.2 Step I - Midpoint Generation of Set I

As can be seen in mid point map of set I (Fig. 5-6), both clustering and inhibitory

I behavior exist. Therefore, a possible alternative to a homogeneous, isotropic Poisson point

pattern for set 1 might be a parent-daughter model. However, if we use the parent-daughter

model, we might not be able to simultaneously represent the inhibitory and the clustered

behavior, unless we use one more parameter such as inhibitory distance or we use a

regionalized intensity function X.(x) instead of a constant value X as explained before in

3 Chapter 4. We, therefore. use the doubly stochastic (Cox) point process to model fracture

set 1 with the hierarchical model.

Fig. 5-8 shows a directional second moment of set I in which characteristic directions

3 of 30-40' and 120-130' (counter-clockwise from the East) are used. In this particular case,

if we confine our interests to small distances (e.g., up to 5m in Fig. 5-8), we cannot see any

U significant deviations from the isotropic case which is also shown in Fig. 5-8. The isotropic

case is plotted for comparison and is identical to a homogeneous Poisson point process

where the second moment, K(t), is identical to ntt 2. This special situation of non-deviation

3 from the isotropic case is quite probable since our mapped pattern has only 39 points, and

we, therefore, cannot see any interactive behavior using the second moment. It also means

3 that it is not possible to derive a correlation function directly because the correlation

function becomes zero in an isotropic case. For this particular case, we modify the intensity

Ifunction as follows.

I In ?(x,) = In (y) + e(x,y)

- a o p(Ay) + a(Yp(r) (5.1)

3 and
In ,(y) - C(Ax,Ay) = a 9o(Ay)3(x,y) -Cr(Ax.Ay) Y= 2 p(r)

r = Ax2 +Ay2  (5.2)I
I
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I We assume that, due to the properties of a spectral density function, the mean intensity is

I governed only by the y direction and the clustering behavior is controlled by distance r (see

Eqn (5.2)), where x and v are the transformed coordinates with the axes rotated by 400

(counter-clockwise from the East) and C(.) is an assumed covariance function.

With the Acceptance / Rejection scheme (Lewis and Shedler, 1979), we performed

50 simulations ; one of the simulations is shown in Fig. 5-9 where we assume that ao = o2 =

0.5, p,(t) = 0.33t and po(t) = 0.5t. The second moment analysis of set I shows that a good

similarity between the simulated and actual (mapped) point pattern exists ( Fig. 5-10 ). The

Monte-Carlo test also shows a satisfactory result. The Cox process can thus be used in a

first step of the hierarchical model, particularly where both clustering and inhibitory

I behavior exist at the same time.

i 5.3 Step 2 - Traces of Set I

I IThe next step is to generate the traces for the simulated mid points of set 1. This

simulation uses trace length statistics corrected for biases using the maximum likelihood

fornmulations as derived in Chapter 4. In this case, set I has 15 u type traces (both ends

I observable), 22 v type traces (one end observable) and 2 w type traces (no ends observable).

For simplicity, we neglect the w type traces.

I The log likelihood of each trace type and the log likelihood of all traces are shown in

Fig. 5-11, while a realization of the simulation is shown in Fig. 5-12.

I

I

I
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5.4 Step 3 - Independence Test 3
In step 3, dependence or independence between sets I and 2 has to be established. If

there is no dependence between set 1 and set 2, we can generate each set by simply I
superimposing the traces set by set. One cf two independence tests either the perturbation 3
method or toroidal shift method c-" 1,. _r,.d.

In the perturbation method, we calculate the (bivariate) second moment of the I
mapped pattern. We, next, perturb the mid points of set 2 by a small amount. This 3
perturbation distance can be obtained using a random number generator. Then the second

moment for the perturbed data is calculated. After a sufficient number of iterations, the

significance (i.e., rank) of the second moment using the mapped pattern is estimated among

those from perturbed data. Instead of perturbation, toroidal shifting of set 2 can be used as I
suggested by Lotwick arid Silverman (1982). That is, instead of a small distance on a

plane, a random distance on a toroid is used when perturbing the second set. Otherwise, The I
remaining procedure is the same as the perturbation method. 3

If the mapped pattern is composed of two independent Poisson point processes,

where a Poisson process implies the stationary, isotropic behavior, the second moment I
measure will be as shown Fig. 5-13. For calculations in Fig. 5-13, we assume that the

number of traces in set I is 39 and 138 in set 2. These numbers are the same as those in the

mapped pattern of Fig. 5-5. As can be seen, the shifted bivariate second moment, K(t) - ntt 2, 3
is almost zero (i.e., independence) and satisfies the Monte-Carlo test since we assumed two

independent Poisson point processes. However, with real mapped data, the shifted second I
moment is not zero and set 2 is positively correlated with set I (see Fig. 5-14). The Monte-

Carlo test also rejects the independence assumption. From this result, we conclude that our

mapped data set is neither homogeneous nor isotropic, and that it shows clustering. That is, 3
Ret 2 has a tendency to get closer to set 1, or, in d rock mechanical sense, if there is a

pre-existing fracture, the next one tends to be near the pre-existing fracture. n

3
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5.5 Step 4 - Generation of Set 2 Midpoints

In the preceding steps, we have found that set 2 is not independent of set 1 and that

3 there are positive correlations between the two sets. Thus, we use correlation measures

when generating the mid point pattern of set 2. For this, we propose two possible

correlation measure methods namely the line-kernel function method and the nearest

3 neighbor fiber method.

When using the line-kernel function method, we divide each trace of set I into a

I number of segments of identical length, and we measure the center point of each segment.

Next, we calculate the distance between a center point of a set 1 segment and a mid point of

set 2. Using a bivariate normal distribution function, we derive a two-dimensional kernel

3 estimate which has a circular distribution. This is done for all center points ; it produces the

line-kemel estimates for our mapped data. To describe the relative uniformity of the

n pattern, we use a mixed distribution when calculating the MLE for conditional intensity:

C + -- f K(x,iyl-)dL (5.3)fk(x, yl,C) = -+Xf n2 c5d

where, fh.(x, vlT, C) is a conditional density function mixing the uniform distribution and

the line-kernel function, C and a are parameters which can be estimated using MLE, A is

an area, i is the number of traces of set l and n2 is the number of the mid points of set 2.

The first part of the right-hand side of Eqn (5.3) comes from the uniform distribution of the

pattern, and the second part is from the line-kernel function with which local clustering can

n be described.

i Using MLE. we find C as 0.65 and a as 0.75, and perform 50 simulations. One of

the simulated mid point patterns is shown in Fig. 5-15. The goodness of fit is checked with

3 two different methods. One is to use the bivariate second moment ( K12 ) with which the

mid point patterns of set I and set 2 are compared. The bivariate second moment is shownI
II
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in Fig. 5-16 ; good agreement between the mapped data and the simulated pattern is 3
obtained. The other check is based on the (univariate) second moment ( K22 ) in which only

the mapped data and simulated patterns of set 2 are compared (Fig. 5-17). This also shows

acceptance of the simulated pattern. From these results, we conclude that the conditional

intensity measures driven by the line-kemel function method are satisfactory. The mixture i
model using the line-kernel function is thus a suitable procedure to generate the mid point 3
pattern of set 2 correlated with set 1.

Instead of the line-kernel function method, the nearest neighbor distance method can 3
be used as a correlation measure. The main idea is to find the nearest fiber from a mid

point of set 2. The nearest fiber distance can be measured between a mid point of set 2 and

an arbitrary point in a fiber of set 1. Since the nearest distance can involve any point on a

fiber of set 1, this scheme makes it possible to include the fiber length effect. To find the

conditional intensity function, we again use a mixed distribution, i.e., i
C 1-C

f (x,yIC, T)=- + - G(x,yloT) (5.4)
A n2'

wheref,(x, yIC, a) is a conditional intensity function with parameters C and a. G(x, y I o)

is a nearest neighbor distance distribution function which is assumed to be normally

distributed. Again, we assume that the conditional intensity function is mixed with the

uniform distribution. From MLE, we found C = 0.65 and a = 0.2. One of the simulated

mid point patterns of set 2 is shown in Fig. 5-18. As we did with the line-kernel function

method, we compared the simulated patterns with mapped data. Fig. 5-19 is a bivariate

second moment analysis of sets I and 2, and Fig. 5-20 is a (univariate) second moment

analysis of set 2. These results also show an acceptable goodness of fit of the mixture

imodel driven by the nearest neighbor fiber method.

The wdvantage of the nearest eilghbor function method is that it only considers a

point within a fiber which becomes a nearest neighbor, while the line-kernel function
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method requires an additional step when calculating the line-kemel function. That is, we

need to calculate the kernel estimates of all the segments in a fiber.

5.6 Step 5 - Generation of Set 2 Traces

Once we have a mid point pattern of set 2, we determine the trace length and

orientation for each point of set 2 :

First, the mean trace length can be calculated using MLE as described before for set

1. With MLE, we estimate the mean trace length to be 2.5m assuming that there are no

trace length correlations between sets I and 2.

To find the orientation correlations, we again consider the nearest fiber concept.

Since we have assumed that the orientation of set I is constant (fixed at 40', see Fig. 5-3),

we calculate orientation distributions of set 2 conditional on set 1. Fig. 5-21 shows the

orientation distribution of set 2 without considering the correlation measures. When we

calculate the orientation distributions of set 2 as a function of the nearest neighbor distance

to set 1, we find that there are no correlations between the sets. This is evident from Fig.

5-22 where the orientation distributions of set 2 obtained by the nearest neighbor distance to

set 1 ( Im, 2m and 3m ) are plotted. Also, the distribution of Fig. 5-21 is plotted for

comparison. Thus, we only need an orientation distribution function for set 2 without any

conditions. For this, we applied two distribution functions which have distribution forms on

a circle. One is the Von Mises distribution (Eqn (5.5)) and the other is the wrapped normal

distribution (Eqn (5.6)) ( see Mardia, 1972 or Fisher, et al, 1987):
1

f(O)= exp(Kcos (0-a)), 0: 0 < 27r (5.5)

With

(0.5 K)2 (0.5K) 4 (0.5 K)6

1! ! 2!2! 3!3!

where, K is a shape parameter and a is a location parameter.
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(0) = [ 2- -n exp(-(0-o-2 r 2), 0<0<2r (5.6) I
__ 20I2

where. a is a location parameter and &2 is a shape parameter. I

To fit the data, we use the bi-modal form of the orientation distribution function, i.e., 3
for the Von Mises distribution,

f(0)= C exp(Kccos (0-(X))
2Y ,( K )

+ 1IC exp(cos (0-a-lt)) (5.7)

2nI,,(ic)

and for the wrapped normal distribution, U
f()C(N27]' exp(- 

I(-?7)
.. 2(72

+ (1C)[ --2a5fl- exp((0-°c-n-2rn)2 ) (5.8)

In our case, C is 0.5. Using MLE, we find the parameters for the Von Mises distribution to

be c = 1050 and K = 1.9, and for the wrapped normal distribution c = 105', a = 0.8. Fig.

5-23 shows the orientation distribution forms of these two functions as well as the I
orientation distribution of set 2. To evaluate the appropriateness of these models relative to

the mapped data, we performed a Kolmogorov-Smirnov test for each case. Both

distributions fit the data at the 5% significance level. Both models can thus be used to 3
simulate the pattern of set 2. Fig. 5-24 is a simulated pattern of set 2 with the mid point

pattern obtained by conditional intensity functions (see, Section 5.4) and with the Von I
Mises orientation distribution. Fig. 5-25 is the same except that the orientation distribution

is the wrapped normal distribution.

I
I
I
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5.7 Step 6 - Termination 3
We now have the mid point pattern, mean trace length and orientation distribution of

sets I and 2. The remaining issue is to define a termination probability among traces.

Dershowitz and Einstein (1988) defined the termination probability by counting both the 3
intersection points and the termination points among traces. An intersection point can be a

crossing point or a termination point as illustrated in Fig. 5-26 (a) and (b). The

Dershowitz/Einstein termination probability is simply the ratio of termination points /

intersection points. However, in our mapped pattern, this method is not appropriate

because traces of set 2 cross traces of set I at many intersection points, i.e., an intersection

of a set 2 trace with a sct I trace is not necessarily a termination. To express the

termination probability more appropriately, a new definition is introduced here. All

termination points and crossing points are counted except the points between ihe center of a

set 2 trace and the farthest intersection point. Thus, in Fig. 5-26 (I), each trace of set 2 (t[21

has a maximum of two intersection (crossing or termination) points (A and B) ; it can also

have only one or none. Using only these corrected intersection points, we derive

termination probability as the ratio of termination points / intersection points. This

procedure introduces some distortion in the distribution of set 2 trace lengths ; however, the

resulting bias does not appear to be serious. Fig. 5-26 illustrates the determination of this I
termination probability. If the pattern is not complicated, the termination probability with

our new termination scheme is the same as that of Dershowitz and Einstein (1988) as in

Fig. 5-26 (c), but if the pattern is complex, the new termination probability will be different 3
(Fig. 5-26 (d)). This termination probability is used when simulating the pattern.

We have now reached the point where the modeled fracture pattern can be completed. -

The simulated patterns of PA100 with the Von Mises orientation distribution function is 3
shown in Fig. 5-27 and with the wrapped normal distribution function in Fig. 5-28.
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Figure 5-26: Calculation of Termination Probability
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5.8 Concluding Comments

In applying the fiber process to model fracture trace distributions, we did the

following:

1. We divide all the traces of a map into two sets according to orientation and 3
we define sets 1 and 2.

2. A doubly stochastic point ( Cox ) process is used as a model for the mid point
pattern of set 1. I

3. With a new MLE scheme, we calculate the mean trace length for each set
assuming an exponential trace length distribution.

4. Using the bivariate point process, we find that mid points of set I and set 2
are dependent on each other and that they are positively correlated. I

5. To calculate the conditional intensity of set 2, two correlation measure
methods are used. One is the line-kernel function method and the other is the
nearest neighbor fiber method. Using these two schemes, we simulate the mid
point pattern of set 2 ( the nearest neighbor fiber method is easi'er to use than
the line-kernel function method ).

6. The Von Mises and the wrapped normal orientation distributions on a circle
are proposed as models for set 2, whereas a fixed orientation of 40' is used in
set 1.

7. To consider the terminations among traces a new termination probability is I
proposed such that a trace is terminated at the farthest end with a prescribed
probability.

In Chapter 4 and 5, we proposed our hierarchical fiber model and studied its

feasibility. It showed that fracture traces of several dependent or independent sets can be

modelled with the hierarchical procedure. The models can represent clusters as well as all

the other geometrical characteristics. The application discussed in this chapter related to I
only two sets but the hierarchical model can be just as easily applied to a larger number of 3
sets.

I
I
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Chapter 6

TOPOLOGICAL APPLICATION OF FRACTURE GEOMETRY

MODEL : SLOPE STABILITY ANALYSIS

6.1 Introduction

When modelling the performance of fractured rock, be that slope stability,

deformation under foundations and around tunnels or flow through the rock mass, both the

geometry and the mechanics need to be represented. As was shown in preceding chapters, it

is now possible to represent the two dimensional stochastic geometry by the hierarchical

fracture model. Also, developments toward a three dimnensional hierarchical fracture

modelling are under way.

What will be discussed in this Chapter is the combination of the fracture geometry

model with suitable mechanical models to represent slope stability. As will be discussed in

more detail below, the mechanical models for slope stability involve models representing

sliding along discontinuities (fractures) and models representing the creation of new

fractures in intact rock which interconnect existing fractures.

6.1.1 Previous Research on Slope Stability

Several studies on rock slope stability have been performed using stochastically

generated fracture patterns and applying simplified or idealized mechanical models for

fracturing of intact rock.

Glynn (1979) generated a parallel fracture pattern with the two dimensional

Veneziano model (Veneziano, 1979) and used an idealized mechanical model. Specifically,

stress increments both in the horizontal and vertical direction were created so that an en

echelon fracturing could be reproduced. O'Reilly (1980) modified Glynn's idealized
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mechanical model by introducing both tensile and shear failure mechanisms. A further step

was accomplished by Shair (1981) who expanded O'Reilly's geometric model by

considering two fracture sets which are not necessarily parallel. Einstein, et al. (1983) 3
summarized the above mentioned models and performed parametric studies on geometric

and on mechanical variables.

All these models are restricted to two dimensions by assuming an infinite extension 3
in the third direction. A solution to the three dimensional stability problems using

stochastic fracture geometry was described by O'Reilly (1980) ; however, his application 3
was resticted to a special case. Numerous applications dealing with three dimensional

sliding failure and deterministic geomet ist (e.g., Einstein, et al., 1979 ; Hoek and Bray, I
1981 ). but they are not directly related to the problem at hand.

6.1.2 Proposed Work on Slope Stability Analysis

In this preliminary study, we will first consider the fully persistent model of a slope.

The fully persistent model is useful when rock block behavior dominates slope stability.

Later, fracturing through intact rock and between existing fractures will be included. For

simplicity, our work will be confined to two dimensional case only. Slope stability I
modelling will be approached as follows:

1. Geometric construction of fracture paths : Depending on the actual fracture
pattern, either the homogeneous Poisson point (or fiber) process model or the
hierarchical fiber process model is used to generate the network of fractures in I
a given two dimensional slope.

2. Kinematic updating : All the possible rock blocks (i.e., fully persistent
blocks) that can be produced with the fracture pattern are simulated and those
which are kinematically admissible are identified.

3. Kinetic (or mechanical) testing : Using an appropriate mechanical model, the
kinetic stability of the kinematically movable blocks is determined.

4. Parametric Studies : By changing values of both the mechanical and the
geometric parameters, the significance and the influence of these variables on I
overall behavior of the slope stability is studied. I

I
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6.2 Generation of Fracture Pattern

Generation of planar fracture patterns in a given rock slope is basically the same as

I that in a two dimensional planar surface. Therefore, various fiber process models can be

used (see Chapter 4). Conventional models (e.g., the two dimensional Baecher model and

the Dershowitz model, see Dershowitz and Einstein, 1988) used the homogeneous Poisson

process model for fracture locations and an exponential or lognormal distribution of

fracture lengths. Very often, in slope stability problems, fracture traces are assumed to be

I parallel to each other. However, in this study, a modified orientation distribution is also

used; either the von Mises or the wrapped normal orientation distribution is adopted, in

addition to the parallel orientation distribution (As we will discuss later, the non-parallel

orientation will cause a more complicated rock block behavior. That is, the generated rock

blocks consisting of one or two sets of parallel fractures have a well defined prescribed face

1 on which sliding occurs, whereas the blocks constructed from the non-parallel orientations

do not have unique sliding faces. The sliding faces can only be determined after the

simulation of the particular fracture pattern is performed. Also, the kinematic admissibility

becomes much more complicated to check). Finally, one can include the fracture

termination probability as in Dershowitz and Einstein (1988) or by using our new concept

discussed in Chapter 5. At present, this is not done here.

Once the slope boundaries and fracture network are generated, one needs to find the

effective fractures. An effective fracture is defined as a fracture which can be a part (i.e., a

face) of a rock block. It must, therefore, have at least two intersection points with other

fractures or with the slope boundaries. In essence, effective fractures are interconnected

fractures. Effective fractures are thus relevant both in slope stability problems and in flow

through rock masses. One can imagine a few algorithms to find the effective fractures; we

will use an iterative searching scheme with which the non-effective fractures are

jsequentially eliminated during iterations. As shown in Fig. 6-1, in each iteration, the non-

I
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effective fractures are eliminated, and this in turn induces further eliminations of the

fractures which are originally connected to them. Our results show that, within at most 5

I
I
I
I
I

I
I
I

I

EFFECTIVE FRACTURES

ELIMINATED FRACTURES AT FIRST ITERATION

................ ELIMINATED FRACTURES AT SECOND ITERATIONS I
(b)

Figure 6-1: Iterative Searching Scheme for Effective Fractures
(a) Initial Fracture Network

(b) Iterative Searching Scheme for Effective Fractures I

I
I
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iterations, all the non-effective fractures are eliminated. The elimination of the non-

effective fractures is also an important step in relation to the program storage design since

the effective fractures rather than total number of fractures or intersection points are used to

define kinematically admissible fracture paths. As a consequence, one can improve the

efficiency of the path-searching algorithm.

6.3 Kinematic Analysis

After removing the non-effective fractures and constructing all possible rock blocks,

one needs to check whether a constructed fracture path is kinematically admissible or not.

I Since the fracture orientations (i.e., dip angles) are not necessarily parallel, one cannot

predict sliding faces or the block shapes beforehand. Therefore, a systematic kinematic

analysis is necessary.

I 6.3.1 Construction of Connectivity Matrices

A connectivity matix is used to find all the appropriate fracture paths (or fully

persistent rock blocks) among effective fractures.

I Assume that the intersection points between effective fractures and slope boundaries

are known. One can, then, construct a connectivity matrix by employing effective fractures

and slope boundaries (i.e., slope face and free surface, see Fig. 6-2). Since all the fracture

paths are composed of either face-to-face paths (paths starting and ending at the slope face)

or face-to-surface paths (paths starting in slope face and ending in surface), one can

-- consider the slope boundaries as effective fractures. For this reason, the corresponding

dimension of the connectivity matrix, N, is

N = Number of Effective fractures + 2 (6.1)

H To construct a connectivity matrix, we assume that each element of the matrix

I
I
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represents either the x- or the y-coordinate of the intersection point and each row or column

of the matrix represents an effective fracture or a slope boundary. Therefore, the

connectivity matrix becomes a square matrix with dimension N. To simplify the searching 3
algorithm, one can assume that the first row/column is the slope face and the last

row/column is the surface of the slope. One can then store the intersection points in the I
appropriate places of the connectivity matrix according to their relationship to the effective

fractures or slope boundaries. Since an effective fracture and a slope boundary cannot

intersect itself, the connectivity matrix has a zero diagonal and is symmetric. An example 3
connectivity matrix is shown in Fig. 6-3. In Fig. 6-3 (a), effective fractures including slope

boundaries are numbered such that the slope face is effective fracture 1; the surface is

effective fracture 5. The remaining fractures are numbered arbitrarily. Fig. 6-3 (b) is the

complete matrix for this case. For example, effective fracture 1 intersects effective fracture I
2 at x-coordinate 1, and effective fracture 3 intersects effective fractures 2 as well as 4 at I

x-coordinates 2 and 3, respectively. I
free surface

Z ,,, °° face-to-surface pathI

face-to-face path !

0 (slope angle ) I
...... range

Fc
Figure 6-2: Typical Rock Slope Configuration

!
I
I
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Figure 6-3: Example of a Connectivity Matrix [CII
(a) A Simulated Effective Fracture Pattern

(b) Construction of a Connectivity Matrix (x-coordinate)
(c) Searching Scheme for a Fracture Path
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6.3.2 Kinematic Consideration

Once the connectivity matrix constructed, the next step is to find the kinematically

possible fracture paths using the connectivity matrix. The information on the fracture paths

are the coordinates of intersection points which become vertices of the blocks. For this,

either the x- or y-coordinate system can be employed in the connectivity matrix and in the m

searching scheme. The other x- or y-coordinates of the intersection points which are not

used in the connectivity matrix can be found easily if the intersection points are numbered

sequentially, and the coordinates of the intersection points are stored correspondingly.

The searching scheme for the kinematically admissible rock blocks is similar to the

dynamic programming scheme used by Glynn (1979). It searches for a fracture path and I
kinematic admissibility of the path simultaneously. In the following, we will explain these

separately for reasons of clarity:

The search for a fracture path which defines a fully persistent rock block follows the m

sequence of steps cited below (see also Fig. 6-3 (c)):

1. Start always at row 1 of the connectivity matrix, where row 1 represents the
slope face.

2. Search for the non-zero element in row 1. If the non-zero element is m
encountered in the j-th column, store the information (i.e., the corresponding
effective fracture and intersection coordinate) and go to row j. It means that
an effective fracture, designated as the j-th fracture, is intersecting the slope I
face at the stored value of the connectivity matrix.

3. Starting from column 1 of fracture j, find the non-zero elements of the j-th
row of the matrix. If the non-zero element is the same as the one stored I
before, neglect it since this is an interesection point which was previously
found. If the column 1 has a non-zero element, store the information. It
represents a face-to-face path. If the last column has a non-zero element,
store it also. In this case, the corresponding fracture path will be a face-to-
surface path (Recall that row/column I represents a slope face and
row/column N represents a free surface, where N is the total number of the
effective fractures including slope boundaries, see Eq. (6.1)).

4. In step 3, if the k-th column of row j has a non-zero element, go to row k, i.e., I
fracture k.

5. Iterate steps 3 and 4 for row k to find a complete fracture path. Whenever a

I
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fracture path is detected in row I and non-zero elements still exist in row 1, go
back to the previous step (i.e., row I - 1) and search for another non-zero
element (i.e., another fracture path) until no more non-zero elements are
detected (see steps 5 of Fig. 6-3(c)).

To eliminate the kinematically inadmissible fracture paths, the following assumptions

are made during the searching algorithm:

1. If the relative location of the next intersection point compared to the position
of the current intersection point lies in region IV (see, Fig. 6-4a), neglect the
corresponding fracture path since it is kinematically inadmissible. Unless this
assumption is made, a sliding rock block will penetrate into the rock mass.

2. If row j of the connectivity matrix is encountered again during a path
searching process, ignore the corresponding path. It means that a concave or
convex sub-block within a rock block is generated and, which is kinematically
unacceptable unless a breakdown of concave/convex sub-block occurs (Fig.
6-4b).

3. Concerning the face-to-face path, even if kinematically admissible, whenever
the location of the starting intersection point of a path is higher (i.e., nearer to
the slope surface) than that of the ending point, neglect that path (Fig. 6-4c).
In this manner, the face-to-face path will be only counted once, namely going
upward.

4. To eliminate a stair-shaped path (Fig. 6-4d), do not consider paths when the
the advancing fracture path has negative orientation (see Fig. 6-4a for
symbols) and the absolute value of it, I1 1, is greater than the minimum dip
angle, I o1, on which a rock block is sliding down.I

6.4 Kinetic Analysis

In the preceding steps, we have found the kinematically admissible fracture paths.

I The remaining task is to analyze whether the kinematically admissible fracture paths are

kinetically or mechanically stable or not. For this, we will use Coulomb's shear failure

criterion as a mechanical model (other models can be easily implemented).

As mentioned in the introduction, we assume that the fracture path making up a rock

block is fully persistent and that the dip angles of the fractures are not necessarily the same

I- (i.e., parallel). One cannot, therefore, predict the minimum dip angle on which the rock

block is to slide until the kinematic analysis is performed. The minimum dip angle plays an

I
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Figure 6-4: Kinematically Inadmissible Fracture Paths I
important role when one predicts the block behavior. As shown in Fig. 6-5, if the rock

block is assumed to behave as a rigid body, i.e., if an intact rock failure is not allowed, there

exists only one contact face on which the block can slide. This is a special case since we

have assumed that the fracture orientations are not parallel such that a fracture which has I
the minimum dip angle becomes the contact (i.e., sliding) face. In the following, we will

discuss this particular block behavior in detail.

6.4.1 Assumptions used in Stability Analysis I

To solve the slope stability problem, the following assumptions are made in the

kinetic analysis :

* The problem is two dimensional, i.e., slope boundaries and fractures are
assumed to extend infinitely in the third dimension.

I
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Figure 6-5: Rigid Body Motion of a Typical Rock Block
Along a Face of Mininum Dip angle a

* Failure of a rock block is assumed to occur along the fracture with the
minimum dip angle. Two failure mechanisms are possible ; sliding and
separation along the fracture faces.

* Failure occurs when the driving force exceeds the resisting force and we will
apply the Coulomb criterion in this case.

" A tensile cut-off stress is used when considering the separation mechanism.

e Water pressure, rock bolt force and seismic effects are neglected.

" Toppling is assumed to be impossible, and, therefore, rotational behavior is not
considered.

" A rock block is assumed to be fully persistent and rigid such that an intact rock
failure or an en echelon failure mode (i.e, failure of intact rock which connects
the adjacent existing fractures) is not possible.

These assumptions are idealized representation of field conditions and future work

will eliminate some of these assumptions.I
6.4.2 Simplified Mechanical Model for Sliding

i As explained above, sliding will only be considered on the fracture plane with the

minimum dip angle (one may include the tensile cut-off stress, (ao), when considering

separation between blocks). As is well known, the shearing resistance on a sliding fracture

* face is

I
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xj=C, + Ytan j (6.2)

and correspondingly the resisting force, Rj, is

Rj = rj A (6.3)

where, a. is the average normal stress which can be derived from the total block weight W; 3
C, and are the cohesion and the friction angle of a fractured face, respectively ; A is the

initial contact area of the fracture with the minimum dip angle. Since a two dimensional

plane failure case is considered, the rock block is assumed to have a unit length in the third

dimension. I

The resisting force due to separation can also be included such that the total resisting 3
forces on a rock block can consist of the shearing force on a sliding face and the tensile

cut-off force on separating faces. The tensile cut-off force, Ro', which is conservatively a 3
scalar sum of all the components along the separating faces can be written as

NIRoy y OA i  (6.4)

where, N and Ai are the total number of separation faces and the area of the separating face

of a rock block, respectively. The total resisting force is therefore, I
R=Rj +Roj (6.5)

The resulting safety margin, SM (Einstein, et al., 1983), and the safety factor, SF, are

calculated as

SM=D-R 3
SF = R (6.6)

where, D is the total driving force and can be calculated from Fig. 6-5 as D = W sin ot

along with the minimum dip angle ox. I
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6.4.3 Program TRACESIM (see Appendix D for details)

To generate a fracture pattern in a slope, which does not necessarily follow a

homogeneous Poisson fracture process, and to perform the kinematic as well as the kinetic

analysis of the fully persistent rock block model, a new computer code, TRACESIM, was

developed. The main features of the program TRACESIM are :

I. Up to 10 effective fractures can be included in one rock block; at present, a
rock block which has more than 10 faces is not considered. However,
modification for more complex block patterns which can include more than
10 effective fractures is possible.

2. Both the homogeneous and the non-homogeneous Poisson fracture pattern
can be simulated. However, among non-homogeneous fracture patterns, only
the Poisson cluster model (Diggle, 1983) can be considered. For more
accurate modelling of the fracture pattern, the existing program POINT (see,
Chapter 4 and Appendix D for details) which was developed to simulate the
non-homogeneous (hierarchical) fracture process model should be employed.

3. An exponential or a lognormal fracture length distribution can be simulated.

4. The von Mises, wrapped normal, uniform and unidirectional orientation
distributions can be simulated.

5. Analysis of two or three fracture sets which have different mechanical (i.e.,
CI, 0, and a0) or geometric (i.e., trace length distribution and orientation
distribution) properties is possible.

6. An auxiliary plotting program TRACESIMP is available for post-processing
and plotting of the results.

7. It can consider not only the conventional face-to-surface rock block whichU may be convex or concave, but also face-to-face blocks.

3 6.5 An Example of Slope Stability Analysis

3 To test the applicability of the concept developed in Sections 6.3 and 6.4, and of the

program TRACESIM, we will analyze the example shown in Fig. 6-6. As illustrated in

3 Figs. 6-7 and 6-8, there are initially 40 fractures in a slope, and subsequently 6 effective

fractures with 10 intersection points. A von Mises orientation distribution with a high

concentration factor and an exponential tracc length distribution are used in Fig. 6-7. As

3 can be detected visually in Fig. 6-8, there exist 3 kinematically possible fracture paths. The

I _ _ _ _ _ _ _ _ _ _ _ _ _
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(unit) i
Cj= 0.4I

0 j= 2508 3
020

Figure 6-6: Configuration of a Slope Example 3

kinetic analysis shows that two of the paths are unstable (see, Figs. 6-9 and 6-10). Finally,

the safety factors, SF, are calculated for these two unstable paths and the failure path for the

case with the minimum SF is plotted in Fig. 6-11.

Through Monte-Carlo simulations, in which one parameter is varied at one time 1
while the others are held constant, one can determine the influence of the geometric and

mechanical parameters. I
6.6 Parametric Studies of a Slope with Fully Persistent Fractures I

So far an example for a fully persistent set of fractures with fixed geometric and i
mechanical parameters has been given. In this section, parametric studies will be

performed to establish relationships between various parameters and the safety factor (i.e.,

the probability of failure), and to find the most significant parameter. Initially, the i

mechanical parameters, such as cohesion (C), friction angle (0) and tensile cut-off stress

{cjj of the fractures, are changed one by one. Later, the geometric configurations such as i
mean orientations, mean trace length and the midpoint model of the fractures are also

varied and their influence on the safety factor is investigated.

Im
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Figure 6-11: Critical Fracture Path

Table 6-1 shows initially fixed and subsequently varied values of all the parameters.

As was the case in the previous example, we do not specify the units of the mechanical or

geometric parameters. Any consistent system of units can be used. Also, slope

configuration is the same as shown in Fig. 6-6 and the initial midpoint model is the

homogeneous Poisson process with 50 fractures. Table 6-2 lists the cases which are

considered in the present study.

6.6.1 Case 1: Variation of Cohesion

Before proceeding to detailed analyses of the parametric studies, we calculate the

I probability of failure, P . Calculation of P is composed of several steps;

1. For a given case, we perform 50 simulations per parameter state of the varied
parameter (the parameter states are listed in Tab. 6-1 ). The resulting data sethas hundreds of possible rock blocks, most of which come from the small

variations of fracture paths. To simplify the data set, we choose the maximum

I
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Table 6-1 Initial and Changing Values of Parameters U

Fixed Varied
Parameter Value Range Comments

Homogeneous or
Non-homogeneous

Model Poisson Model 3
No. of Fracture

Sets, N1 2

0, 500,
Cohesion, Cj 1000 1000,1500

Friction 100, 20' 3
Angle, 4j 300 300, 400

Tensile Cut- 0,10
off Stress, (,j 0 50, 100

Orientation
Concentration 10,20,

Factor, K 20 30,40

Mean Fracture
Orientation 200, 300,

(Dip Angle), (x 400 400, 500

Mean Trace 4, 6,
Length, m, 6 8,10

Unit Weight of
Rock Mass, y 2200 Fixed

or the minimum volume among rock blocks which have the same sliding
angle. We already know that the sliding angle is the minimum dip angle
which becomes one of the faces of the fully persistent rock block, and on I
which the rock block is sliding down. We expect that choosing either the
maximum or the minimum volume does not affect the overall properties of
the data (e.g., randomness of the number of occurrences of kinematically
admissible rock blocks and mean sliding angle. etc) since, even though
different in shapes due to path variations, the fracture paths which retain the
same sliding angle have essentially the same properties. Fig. 6-12 is a plot of
sliding angle v.s. volume of rock blocks for case I with parameter state, CJ =
1000 (recall that 50 simulations are run per parameter state). Fig. 6-13 is a
simplification of the data in Fig. 6-12, in that only the maximum rock block
volume is considered.

I
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Table 6-2 Investigated Cases

Case Model N Cj K a m1

Case 1 H. P. 1 Varied Fixed Fixed Fixed Fixed Fixed

Case 2 H. P. 1 Fixed Varied Fixed Fixed Fixed Fixed

Case 3 H. P. 1 Fixed Fixed Varied Fixed Fixed Fixed

Case 4 H. P. 1 Fixed Fixed Fixed Varied Fixed Fixed

Case 5 H. P. 1 Fixed Fixed Fixed Fixed Varied Fixed

Case 6 H. P. 1 Fixed Fixed Fixed Fixed Fixed Varied

Case 7 H. P. 2 Fixed Fixed Fixed Fixed Fixed Fixed

Case 8 N. P. 1 Fixed Fixed Fixed Fixed Fixed Fixed

2. Check the randomness of the number of occurrences of kinematically
admissible rock blocks, or kinematic mechanisms. If the kinematically
admissible rock blocks occur randomly, i.e., if the number of kinematic
mechanisms follow the Poisson distribution during simulations, the
corresponding probability of failure, due to the Poisson process properties,
can be calculated easily. In the following, we will discuss the procedure to
derive the probability of failure in detail. To check the randomness, a X2-test
is employed. The resulting goodness-of-fit is satisfied at the 10% significance
level, see Fig. 6-14. One can, therefore, assume that, during simulations, the
kinematically admissible rock blocks occur randomly.

3. Calculate mean (m,,) and standard deviation (oa,,,) of the sliding angle for a
given volume of rock block. The mean sliding angle can be estimated by
regression, whereas the standard deviation is calculated from the moving
average of the data with respect to the estimated mean sliding angle. We do
this because the standard deviation derived from the moving average gives a
relatively constant value and, therefore, only one variable, ie, (m ), is
necessary to calculate the probability of failure for a given volume of rock
block. A window width of 10 volume units is used in our case. Fig. 6-15
shows the curve obtained from nonlinear regression which is used to find the
mean sliding angle for a given volume of rock block.

4. Calculate the number (or the frequency) of kinematically admissible rock
blocks, X(V), as a function of the volume of rock blocks. In our case, either
an Exponential or a Gamma distribution can be fitted to the data. However, to
prevent the fitted frequencies from approaching zero as the volume of rock
block increases, and thus to make it possible to calculate the probability of
failure of a very large volume, a Gamma distribution is used. Fig. 6-16 is an
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example of the fitting the data with the Gamma distribution to find the
frequency of kinematic mechanisms.

5. To include the cohesion effects on a sliding face of the rock block, one needs
to calculate the contact lengths for given volumes of rock blocks. In our case,
since the contact lengths vary widely and fluctuate inconsistently for a given
volume of rock block, they cannot be estimated directly, nor precisely (see,
Fig. 6-17). However, one can derive a distribution form for the contact length
indirectly as follows:

* Assume a reference point (see, Fig. 6-17). This reference point can be
connected with any of the data points in Fig. 6-17. The reference point, I
however, does not connect with every data point, e.g., if the volume is
too small, one can ignore the corresponding data points since they do
not affect the overall relationship between the contact length and the I
volume of rock block. This is evident when we consider the following
steps where the relationship between length and volume is represented
by a distribution form.

* Calculate slopes of lines which connect the reference point and the data
points. Also, calculate the maximum and the minimum slope (Fig.
6-17).

" A Beta distribution is, then, fitted to the slope data to estimate the
distribution of the slopes for given volume of rock blocks, Fig. 6-18. In
Fig. 6-18, *c is calculated as:

E -X...- a (6.7) I

where, is the maximum slope found in Fig. 6-17, and a is a I
currently considered slope. Fitting the data to a Beta distribution is
performed with the method of moments (the first and the second
moment are used to find the parameters of a Beta distribution).

* Finally, relate the contact length and the volume of rock block since
one of the points (i.e., the reference point) and the distribution of the
slopes are now known.

Assuming the slope angle is distributed normally for a given volume of rock block, 3
the probability of failure for a given volume of rock block, P/fj, is calculated as:

Pf 1v= P ( a , > ,,") I V) I

= -P(( a < ac,,j IV)

= -, J C,, ,; exp [- aO- M. ,.)2 Ida (6.8)

=I-3

I



-142-

COHZSION - 1000

S35 9 @

r 30 -v e

G *e"P a 9

G 10"
L -

05

0 10 20 30 40 50 60 70

VOLUME or ROCK BLOCK

* ALL DATA

M MAXIMUM VOLUME DATA

Figure 6-12: A Plot of Sliding Angle v.s. Volume of Rock Block with
.All Data Set

45 i ! i

CORESZON - 1000

35 * *
L t

1 30'* ': ** ,

I *
N 

2 5  *•G 2&' * *

A ** * , * t

N
0 15'

L
10.

5 ,

o 10 20 30 40 50 60 0

I VOLUMN Or ROCK BLOCK

Figure 6-13: Simplification of Fig. 6-12 with Maximum Volume

I
I



-143-

2&.----4~ 4.-+

15

F

E
Q

UI
N

C
y5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4-' 5. 5. 6.0

NO. Or KINMATIC MECHANISMiS3

- -DATA
-@-POISSON EcODEL

Figure 6-14: Randomness Test of Occurrences of

Kinematically Admissible Rock blocks

COllISION - 10003

S 40f.
L *

'IF * * II
N
G

0 10 20 30 40 5 0 7

VOLMC or ROCK ELOCK

*DATA

- ITTED MAN SLIDING ANGLE ; 34.1EXP((-0.0227)*X)

Figure 6-15: Calculation of Mean Sliding Angle Given Volume of Rock Block3



1 -144-

4.
COUiSION - 1000

12'

I 710! -R
Q 8

E
N 6

C
I 4

0 5 10 i5 20 25 30 35 40 45 50 55

- DATA VOLU N OF ROCK BU OCK

-0- HODZL ; 55.8*0.04*ZX(-0.04*X)*(0.04*X) t(-0.46)I
3 IFigure 6-16: Calculation of No. of Kinematic Mechanisms

I
where, ci,j, is a critical angle for which the safety factor, S. F., becomes 1. m(1 v and a,,v

U are the mean and the standard deviation of the sliding angle for a given volume of rock

3 block, respectively.

From Step 4 above and from Eq. (6.8), one can estimate the rate of failure

I occurrences (i.e., the expected number of kinetically unstable rock blocks) within any

volume interval; specifically, the rate of failure occurrences within a volume interval

[V, V21] can be calculated as:

E [ No. Failures in(V I, V2 )]I X(V)Pf,dV (6.9)

I
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where. k(V) is the frequency of kinematically admissible rock blocks derived in Step 4 in

the above. Finally, since the occurrences of kinematically admissible rock blocks are

3 random (see, Step 2 in the above), the probability of failure within a volume interval

[V, 1V, ] is estimated from the following equation:

Pf (V I -V 2 ) = 1- eI INo.Faihirsin( v Iv 2 )] (6.10)

I
Up to now, we derived the equation for the probability of failure for a given volume

of rock block and, from this, obtained the probability of failure as well as the rate of failure,

occurrences within a volume interval. Using these relations, one can now investigate the

influence of various parameters. We begin with the cohesion effect. To investigate the

3 cohesion effect, the other mechanical and geometric parameters are set constant. As can be

imagined, if the cohesion of a fracture is increased from 0 to 1500, tie proba'-ility of failure

3 for a given volume of rock block significantly decreases, see Fig. 6-19. Note that, when the

cohesion has no influence on overall behavior (i.e., Cj = 0), the probability of failure will be

I a monotonically decreasing function, whereas when the cohesion is included in estimating

probabilities, one can define a critical or maximum probability of failure which is a

function of the volume of rock block. This is an expected result since the slope has a fixed

3 height. It can also explained when one considers the limit state equilibrium. The safety

factor for cases affected by friction only will be a function of the sliding angle which is

3 generally inversely proportional to the volume of rock block (see, Fig. 6-15). However, if

the cohesion is included in the analysis, the cohesion and the contact length along which

cohesion acts will influence the stability. In other words, when the volume is small, the

3I cohesional resistance is more significant than the frictional resistance, while the frictional

resistance is dominating the overall behavior of the rock block as the volume of rock block

3- increases. This is because the unit weight of rock mass, y, is a relatively large value (2200

units) such that, as the volume is increased, its effect on overall behavior (i.e., frictional
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resistance) greatly increases. One can, therefore, define the critical volume or the

maximum probability of failure at the junction of these two effects. Another fact to notice

is that, as cohesion increases, the critical volume at which the maximum probability of 3
failure occurs also increases.

The rate of failure occurrences in a volume interval, Eq. (6.9), is plotted in Fig. 6-20, 1
where the interval is set to 1 unit. In Fig. 6-20, one cannot define a maximum rate of failure

occurrences with cohesion value 100 (i.e., the maximum rate occurs at 0 volume). This is

because the rate of change of the number of kinematic mechanisms in Fig. 6-16 is more 3
rapid than the rate of change of the probability of failure for given small volumes in Fig.

6-19. The probability of failure in a volume interval ( 1 unit ) is depicted in Fig. 6-21. N
6.6.2 Case 2: Variation of Friction Angle 3

When the friction angle increases from 100 to 40', dramatic changes in overall 3
behavior of the probabilities are induced; specifically the probability of failure for a given

volume of rock block is diminished as the friction angle increases, Fig. 6-22. However, the 3
critical volume at which the maximum probability of failure occurs decreases as the friction

angle is increased. This is different from the effect of varying cohesion and it can be I
explained by the fact that, when the friction angle is small, the resisting force due to the 3
friction angle together with the volume (actually, weight) is relatively less significant than

the resisting force due to cohesion; whereas, if the friction angle increases, the frictional 3
resistance increases rapidly (recall that the unit weight of rock mass, y, is a relatively large

value, 2200) and it will dominate the overall probabilities. The critical volume is, therefore, I
decreased.

The rate of failure occurrences and the probability of failure in a volume interval (1

unit) are illustrated in Figs. 6-23 and 6-24, respectively. These two figures clearly show the 3
critical volume interval at which the maximum rate and the maximum probability of failure I

I
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occur. In our slope geometry case, the critical volume interval is roughly in 4 to 5 volume I
units. I

6.6.3 Case 3: Variation of Tensile Cut-off Stress

The tensile cut-off stress is varied between 0 to 100. The probability of failure for a

given volume of rock block decreases slightly, Fig. 6-25, as one goes from 0 to 100. One 3
cannot, however, observe any significant changes in overall behavior of the probabilities.

This means that, when cohesion is relatively large (i.e., C. = 1000) and the maximum tensile I
cut-off stress is less than one tenth of the cohesion value, the resisting force due to the

tensile cut-off stress does not dominate the resisting forces and, therefore, the probability of

failure.

I
I
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6.6.4 Case 4: Variation of Concentration Factor of Orientation

Various orientation (dip angle in two dimensional slope stability analysis) models are

used when generating a fracture pattern. In our case, we have used the Von Mises

distribution with two parameters; one is the mean orientation which is set to 400, the other

is the concentration factor K which determines the concentration around the mean

orientation. If K is relatively high, the fracture pattern is concentrated (peaked) around the

mean orientation; if not, the pattern is dispersed about the mean orientaion and many of

kinematically admissible rock blocks can be generated. In the parametric study,

concentration factors ranging from 10 up to 40 have been used. Also, to include the

influence of cohesion, two different cohesion values are compared.

First, when the cohesion value is relatively large (Cj = 1000), the probability of

failure for a given volume of rock block increases with KC up to K = 20 because the mean

sliding angle becomes steep (recall the mean sliding angle is different from the mean

orientation in that the mean sliding angle is the minimum dip angle which constitutes the

sliding face of a rock block), see Fig. 6-26. However, as the concentration factor is further

increased, the mean sliding angle as well as the contact length of the sliding face increase.

(Fig. 6-26). At this point, the resisting force due to cohesion effect dominates the overall

behavior and, correspondingly, the probability of failure for a given volume of rock block

decreases. Eventually, when the fractures becomes parallel (very high Kc), the probability of

failure for a given volume of rock block will be zero, Fig. 6-27. Second, if the cohesion

value is relatively small (C = 100), the probability of failure for a given volume of rock

block gradually increases and finally becomes 1 as the pattern becomes parallel, Fig. 6-28.

This is because the cohesional resistance is not so significant compared with the frictional

resistance of the rock block. From the comparison of these two cases, one can conclude

that, when the cohesion is large, the probability of failure for a given volume of rock block

increases up to a favorable concentration factor (in our case, K = 20) where the contact
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length (i.e., the cohesion effect) does not contribute to the overall behavior. However, as

the fractures approach a parallel pattern (in our case, when K is 30 or more), the contact

lengths are getting longer and finally all the blocks have triangular shapes where the faces

of a triangle are composed of two slope boundaries (slope face and surface) and a contact

face, Fig. 6-26. It means that the resisting force due to cohesion becomes significant and

the probability of failure for a given volume of rock block rapidly decreases and finally

becomes zero. When the cohesion effect is negligible, the probability of failure for a given U
volume of rock block generally increases and finally becomes l as the pattern becomes

parallel. One more fact to notice is that, when the pattern is parallel, a maximum limit

volume exists since our model of a slope has a toe; in the present simulations, the maximum

is II volume units. I
surface

.+o I0. K increase

_ "''""K =10

contact face

detaching face I

Figure 6-26: Typical Fracture Pattern with Increasing K I

The rate of failure occurrences as well as the probability of failure in a volume

interval have the same tendencies as the probability of failure for a given volume of rock I
block.

I
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6.6.5 Case 5: Variation of Mean Orientation

When the mean orientation (dip angle) of the fractures is changed from 20° to 500,

the overall probability of failure increases. However, since the slope angle, 0, is set to 500

(see Fig. 6-6), the probability of failure for a given volume of rock block sharply decreases

if the mean orientation (dip angle) is 50" and if the volume is increased, see Fig. 6-29. This

can be explained by the fact that, for a mean orientation 500, a chance to construct a fully

persistent rock block is rarely possible except for small volumes. Figs. 6-30 and 6-31 also

show the rate of failure occurrences and the probability of failure in a volume interval. 3
6.6.6 Case 6: Variation of Mean Trace Length

Using the exponential trace length distribution model and varying the mean trace

length from 4 to 10 units, one can find the critical volume and the maximum probability of

failure, Fig. 6-32. However, when the mean trace length is less than 4 units, one cannot find

any trend since there is little chance to construct a fully persistent rock block. As can be

foreseen, when the mean trace length is increased, the probability of failure for a given

volume of rock block increases since the mean sliding angle is getting steeper as the mean

trace length is increased, see Fig. 6-33. The main reason for the increase in the fitted mean I
sliding angle is that, since the fracture patterns with different trace length cases are I

generated with the same random number sequences, the blocks made with large mean trace

length include the blocks which were previously made with small mean trace length, see !

Fig. 6-33. As a result, the fitted mean sliding angle has a possibility to be steeper as the

mean trace length is increased. Also, the same behavior occurs both in the rate of failure I
occurrences and in the probability of failure in a volume interval.

I
I
I
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Figure 6-33: Changes of Mean Sliding Angle:
Variation of Mean Trace Length

6.6.7 Case 7: Variation of Number of Fracture Sets

To study the fracture set effect, we divide the fractures into two sets. Set I is a set of

25 fractures with mean orientation of 40°; set 2 is a set of 25 fractures with mean

orientations ranging from 200 to 130 ° . Considering the absolutely very low probabilities of

failure in Fig. 6-35, one can state that the probability of failure for a given volume of rock

block is not greatly influenced by the second set when Cj = 1000. This is quite probable

since, in the case of 20', the dip angle on which the rock block is sliding down is dominated

I by set 2 orientation (i.e., the mean sliding angle decreases, see Fig. 6-34(a)), and therefore,

the overall probability of failure is diminished. Also, in the case of set 2 of 400,

combination of two sets determines the sliding dip angle (i.e., the fitted mean sliding angle

becomes the steepest if the mean orientations of two sets are equal to 400, Fig. 6-34(b)) and

the probability of failure increases (recall that the sliding dip angle is determined as the
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minimum dip angle among fractures which constitute the faces of a rock block). However,

in the remaining cases, the dominating dip angle on which the block is sliding down is •

governed by set 1 (i.e., mean sliding angle = 400) and no significant changes in

probabilities are expected, Fig. 6-34(c).

When it comes to the rate of failure occurrences and the probability of failure in a I
volume interval (Figs. 6-36 and 6-3 1, respectively), the above mentioned two fracture set

cases, i.e., 200 and 40", as well as the case with 130' have a significant influence on the

overall behavior. We may deduce the reason for these results as follows; First, when the

mean orientations of two sets are orthogonal (i.e., 40' and 130'), more chances to make

fully persistent blocks are expected in small volumes where the mean trace length was fixed

at 6 units; however, as the volume is increased, these chances to construct the fully

persistent blocks are rarely possible. Second, when the mean orientations of the two sets are I
200 and 400, one has the greatest possibility to construct a fully persistent block except in

the small volume region where the orthogonal sets (see above) have greatest probabilities of

failure. One can explain this by considering the connectivity matrix concept. That is, if

fractures intersect the slope face at many points, more chances to construct the fully

persistent rock blocks are possible, and if the mean orientation of fracture set is relatively

flat, it will intersect the slope face at many points. Finally, for the same reason as above,

when the mean orientations of two sets are equal and are set to 400, one also has much more

chances to make blocks except the second case.

6.6.8 Case 8: Variation of Midpoint Model of Fractures

Up to now, we have utilized the homogeneous Poisson process model when

generating the midpoints of fractures. For modelling non-homogeneous Poisson processes, I
we will employ the Poisson clustering model (rather than the Cox process model) in which

the number of seeds (i.e., parents) and the number of daughters are predetermined. In our

I'
I
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3 Figure 6-37: Pf in a Volume Interval: Variation of
Number of Fracture Sets

case, w will use 3 midpoints as seeds, and the remaining 47 midpoints as daughter

fractures. To compare the result, we also use the homogeneous Poisson process model in

which 50 fractures are generated radomly over the slope.

I The probability of failure for a given volume of rock block increases in the case of

3 non-homogeneous Poisson process model compared to the case of homogeneous Poisson

process model since the fractures are clustered around the parent, and therefore, make it

easier to construct a fully persistent block. Fig. 6-38 shows the differences in the probability

of failure between the non-homogeneous and the homogeneous Poisson process model.

I Also shown in Figs. 6-39 and 6-40 are the rate of failure occurrences and the probability of

failure in a volume interval, respectively.

I
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6.7 Discussion

In this chapter, we investigated blocky rock mass behavior by using stochastically

generated fracture patterns and by employing a topological concept. At present, the model

is limited to fully persistent fractures, but one can vary mechanical properties of fratures

such as cohesion, friction angle and tensile cut-off stress. Also, geometric properties such as

mean orientation, concentration factor, mean trace length, number of fracture sets and the

midpoint model of fractures can be varied. The effect of varying these parameters, which

amounts to a sensitivity study, showed that the number of kinematically admissible rock

blocks was largely controlled by the number of effective fractures which intersect the slope

face, and that the most important parameter in slope stability analysis was the cohesion as
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well as the friction angle of a contact face. These two parameters influenced the critical

volume (or the maximum probability of failure). Less importantly, the orientation N
distribution (i.e., mean orientation and concentration factor) affected the overall behavior of

the slope stability. However, in our cases, the tensile cut-off stress did not dominate the

overall probabilities.

The present limitation of the model in addition to the assumption of persistent

fractures is that Program TRACESIM can detect only up to 10 different fractures which

become the faces of a rock block. This needs to be modified if the pattern becomes

complicated (i.e., more than 10 fracture paths in a rock block). The limitation can be

overcome by expanding the connectivity matrix and by adding iteration loops into program

TRACESIM. Future research will also make it possible to consider different slope shapes

such as slopes with benches and with tension crack developed at the slope surface. I
Meanwhile, modelling of non-persistent failure requires representation of fracture

coalescence. I
I
I
I
I
I
I
I
I
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Chapter 7

SUMMARY, CONCLUSIONS AND OUTLOOK

The main objective of this research was to develop a model and simulation procedure

for rock fractures that can reflect the sequential mechanism of fracture formation and, thus,

includes dependencies and spatial nonhomogeneities that are often seen in rock outcrops.

Modelling of sequential fracture sets has been accomplished using the hierarchical

fracture geometry model. Specifically, the main features of the model are :

1. The spatial variation of trace density is represented by an inhomogeneous
Poisson point process or by a doubly stochastic ( Cox ) point process.

2. A new method, based on maximum likelihood, has been developed for the
unbiased estimation of trace length distribution.

3. When several trace sets are present, these sets are analyzed sequentially,
according to a hierarchical order. Each set is represented by a conditional
stochastic process, conditioning being with regard to the lower-order sets.

4. Two correlation measure methods, the line-kernel function method and the
nearest neighbor distance method, have been used to account for the
dependencies among fracture sets.

5. Methods from multivariate point processes (Diggle, 1983) have been adapted
to the estimation and validation of multivariate fiber processes.

6. A modified termination probability was developed to describe the complex
pattern of fracture intersections.

The hierarchical model has been applied to two cases in which detailed fracture

patterns have been obtained, one with a single set and one with two sets. The validity of the

model was checked by visual comparison between model prediction and mapped pattern

and most importantly, by statistical checks such as the second-moment analyses and the

Monte Carlo test. A satisfactory fit of the predicted pattern was obtained in both cases.

The hierarchical fracture model has been combined with a topological model to

investigate the behavior of a blocky rock mass. The application of the combined

hierarchical and topological model proceeds as follows;
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1. A stochastic fracture pattern is generated with the hierarchical fracture I
geometry model.

2. Kinematic as well as kinetic analyses on fully persistent rock blocks are
conducted.I

3. Finally, using sensitivity analyses, the mechanical and geometric fracture
parameters which have the greatest influence are determined.

Slope stability analysis using a fully persistent block model shows that the number of

effective fractures which intersect the slope face are the key element for constructing a fully

persistent blocky rock mass. Also, in most cases, we could define the critical volume which

gives the maximum probability of failure for a given rock block volume.

So far the hierarchical model has been applied to two dimensions only, i.e., to I
fracture traces in a plane. Further work on the stochastic fracture geometry model will have

to be focused on the three dimensional expansion of the existing model. One of the

possible three dimensional models can be based on the homogeneous, isotropic Poisson 3
RACS (RAndom Closed Set) process. This idealized model can be expanded to a three

dimensional hierarchical model. Clearly, this requires establishing relationships between I
two dimensional trace length distributions and three dimensional fracture size distributions

as well as the consideration of three dimensional orientation distributions.

Concerning topological modelling of a rock mass, two issues will have to be

considered in the future work; one is the implementation of a more realistic mechanical

model for rock fracturing, notably the mechanism of coalescence of non persistent I
fractures; the other is an expansion of the two dimensional slope stability problem into a 3
three dimensional one.

It should be noted that, while this research has concentrated on an application to rock I
slope stability, the basis has been laid for a much broader application. The hierarchical

fracture model can be used in any problem involving fractured rock masses. The I
topological model is similarly useful in other rock mass problem such as flow through

I



-168-

fractured rock masses. Most i.portauntly, by expandijig the mechanical aspects to include

coalescence of existing fractures, the combined hierarchical and topological model can be

Iused in any problem involving solid bodies with discontinuities. Notably, it will be

possible to model fractured (cracked) concrete structures. On the other hand, a better

Iunderstanding of basic small and large scale geologic processes will also be possible.

I
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Appendix A I
TESTS FOR RANDOMNESS I

Various test methods exist for checking Complete Spatial Randomness. The

approaches can be divided into two groups ; one is based on the quadrat count method,

while the other uses a distance measure schemes. We will mainly discuss the latter since the

quadrat count method, in some cases, cannot satisfactorily describe the point pattern.

A.I Distance-based [ Plotless J Tests

We will discuss the distance-based test assuming the Poisson point process as a null

hypothesis Ho. For later use, we define various distances which have their own I
characteristics. Define an event as a real point pattern such as a tree or mid point of a trace

and a point as an artificial point selected randomly. We denote a event-event distance by W,

a point-nearest event distance by X, a point-second nearest event by X 2, a distance from an

event selected using a random point to the nearest event on a same half plane by Y and,

lastly, a distance from an event selected using a random point to the nearest event on the I
other half plane by Z ( see Fig A-I for details ). Here we assume m as the total number of

events and p as the population intensity. The summation ( X ) in the following equations

is for i I,..m.

Clark and Evans ( 1954 ) developed a test based on the inter-event distances.

Assuming a point population intensity p in a region, the mean observed distance can be I
represented as

W , -(A.1)
mI

The mean distance which would be expected if the pattern is f~'llowing CSR,

1
I
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WE 1 I _ (A.2)

The ratio

hCE WA (A.3)

can be used as a measure of the degree of departure from CSR. In CSR, hCE = 1, under

conditions of maximum agregation, hcE becomes 0.

Hopkins ( 1954 ) used X and W distances. His test requires complete enumeration of

events in the study region. Under CSR,

hH F2.'2, (A.4)

Here, relatively small or large values of h,, indicate a regular or aggregated pattern,

3 respectively.

I
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Pielou ( 1959 ) used an index of non-randomness by calculating

AXX
h_ =nP - N(l,-) (A.5)

m m

In an aggregated population, one would expect a large value of X2 , giving a higher value of

hp. Mountford (1961) considered the sampling errors and corrected Pielou's index.

Holgate (1965 ) adopted nearest and second nearest distance X, X2 and suggested a

ratio test, based on the sample mean of the ratio

h x - N(1, 1 (A.6)

2' l2ni I
We reject the Ho if the observed value of hHo differs from its expectation by more than k

times its sampling standard deviation, where k is the appropriate percentage point of the I
normal distribution. If, instead of the mean of ratios, the ratio of means is considered

ho= (  x ) - F 2 ,,  (A.7)

X 2 2.

These test methods are efficient whether a pattern is distributed regularly or not. Here, a

regularity means that the points are evenly distributed over a region.

Eberhardt ( 1967 ) considered the moment ratio which is easy to calculate
h E(X2) ny X2

hE- 2  ( coefficient of variation )2 + 1 =, (A.8)
[E(X)]2  I )

where, hE increases with increasing tendency for aggregation. Since the sampling I
distributions of the ratio have not been worked out, an exact test of deviation from CSR is

not available. But Eqn (A.8) doesn't require a knowledge of density.

Besag & Gleaves ( 1973 ) introduced a T-square test. This test aims to preserve the

intuitive appeal of Hopkins' ( 1954 ) test, and it proved more successful than Holgate's

(1965) test. It consistsof the following statistic I
I
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1 hBG 2X 2  N(-

"I 2 X)+2 Z 2 liin

F2,' (A.9)

Both tests are comparatively powerful against regular or aggregated alternatives since

relatively small or large values of hBG1 or hBG2 indicate a regular or aggregated pattern,

respectively. Thus these tests can be used as three-way characterization of spatial point

pattern as regular, random or aggregated corresponding to a small, non-significant or large

value for h/ DG and hBG2.

Diggle, et al. (1976 ) suggested CSR test with X and Z distance. Their statistic is as

follows,

hDB=X 2[{min(2)C-,Z 2-) )/(2X2+Z 2 )]/m - N( , 12m

I
It only detects nonrandomness and cannot distinguish between aggregation and regularity.

I Cox & Lewis ( 1976 ) used the conditioned distance ratio method. They considered X

and W distance and collected pairs m0 S m for which W _ X i . Transforming these two

distances into ri, they showed for regularity,3 M=min(r,...,r,,) - Beta(1,nmo ) (A.II)

and for aggregation,

R2 r - m ) (A. 12)M
Diggle ( 1977 ) suggested a generalized likelihood ratio test. This test is based on the

method of Besag & Gleaves ( 1973 ) when he considered the difference between clustering

and random heterogeneity in the environment.

I hn= 4 8 m{ nilog [(I: 2X 2 +Z 2 )/mJ - Y log (2X 2 +Z 2 ) } / ( 13 m + l )

XM,- (A. 13)I
I
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It can be used as four-way characterization of spatial point patterns as regular, random-

homogeneous, random-heterogeneous, or aggregated. This test can be used to test

heterogeneity if the test of Besag & Gleaves ( 1973 ) doesn't have a satisfactory result. 3
Ripley ( 1977 ) considered an edge-corrected second-moment as a test based on the

idea of Besag (1977 ). The second moment is
A

K(t)=rn-2 I k(x, y) (A.14)

where k(x,y) - ' is the proportion of the circumference of the circle centered x passing

through y. Besag (1977 ) suggested the plot of the stabilizing function L(t)=/Vk(t)/n vs t 3
and L, = sup IL (t)-tI as a test statistic for CSR.

Brown & Rothery ( 1978 ) considered three statistics,

m

m- I I (X 2-D) 21D 2

G=( IX 2 )1"1 ID (A.15)
i=1 I

here, D is the mean squared distance, S is the square of the coefficient of variation of the

squared nearest neighbor distances. Small values indicate local regularity, for complete i
regularity S = 0. S is an equivalent form of the Eberhardt ( 1967 ) test except for the

squared distances. G is the ratio of the geometric mean to the arithmetic mean of the

squared distances. It lies in the interval (0, 1) and large values of G indicate local

regularity. When points are chosen at random, the distribution of S and G depend on the

number of points and on the shape, but not the size, of the area. i

Hines & Hines ( 1979 ) modified the Eberhardt ( 1967 ) test and adapted it to T-

square sampling,
2 n , (2X 2 +Z 2)hiM = --(A. 16)

11X[XV-2-+ZI)2

Thy p
They proved h11 is powerful when detecting aggregation.
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Byth & Ripley (1980 ) used a semi-systematic sampling scheme as a modification of

the Hopkins' (1954 ) test. Fig A-2 shows the schematic sampling of their procedure. Set

f • o

I
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0 0€

!0

-------------------------------------- r

a 0
I I

rado from ths nmrtdad esr h qaeddsac hs

i 0 ••0 •I

I0

Figure A-2: Semisysternatic Sampling Scheme of Byth & Ripley ( 1980 )
i up a grid of 2m points. From m sampling points, measure the squared distance to nearest

event, X. i,= 1 .....nm with remaining points. Layout a small plot of a size which would

contain about five events on average and count the events in each plot. Select mn events at3 random from those enumerated and measure the squared distance W~z. Thus,

I
I ___
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EBI W

2  -m"2

IBR2 X 2 ) N(!',.-1 (A. 17)hBR2 = M (X2+W2 2 12m

and use these statistic as tests of CSR. They suggested hBR! for suspecting clustered pattern I
and hBR2 for regular alternatives.

Heinrich ( 1984. 1986 ) modified the Ripley's ( 1977 ) second moment test and

included the variance, assuming the normally distributed random variable of K(t). For

testing the null hypothesis with given significance level a. he suggested

ht( t, p, a )-pa[K(t-t7rt21 (A.18)

tq2t( I+21tt2 p)

where a is a length of a squared area.

A.2 Quadrat Count Tests

It is well known that the quadrat count test is a weak test compared with the distance-

based test since (1) the size of the quadrat has effect on the results, (2) several different

patterns may have same test results and (3) the counts lack spatial autoc,)rrelations. 3
To test CSR with quadrat count method, we assume that the data are made up of

independent counts n,.....n,, in m quadrats, each with area B, and with the mean of counts is I

Fisher. et al. ( 1922 ) used the sample variance to mean ratio or index of dispersion as

a test
rn

I= (ni-Ti) 2 /1 (Kn-I)T) (A.19)
i=|

Under CSR,
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(m-)I ~- (A.20)

I where, usually rn > 6 and pB > 1. Significantly large or small values indicate aggregate or

3 regular pattern, respectively.

Mead ( 19974 ) showed various alternative tests based on the hierarchical

3 classification of quadrats. Upton & Fingleton ( 1985 ) described the use of quadrat count

test in detail.

* A.3 Discussion

We have discussed many tests which can be used to test CSR. To find the most

efficient test set is not simple because each test has its own merit. In general, one needs to

I include edge effects. For this reason, we advocate the us- of Ripley's ( 1977 ) test. In this

type of test, any shape of region can be used and no correction for edge effects is required if

we use the Monte-Corlo simulation suggested by Bamard ( 1963 ).

Since the CSR test can only be used to check the null hypothesis, we need an

alternative model ( i.e., non-Poisson point model ) if the null hypothesis is not satisfied.

I
U
I
I
I
I
I
I
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Appendix B i
METHODS FOR EDGE-CORRECTION

When we calculate the second moment of given data points, we need to consider

edge effects. Here, we discuss two popular methods which can be used to correct the edge

effects. 3

BIA Edge-correction with the Graphical Method 3
The original idea for this correction is Ripley's (1977) ; it was simplified by Ohser &

Stovan (1981) and by Diggle (1983). One definition of the second moment, K(t), is

K(t)=n-2 A Y k(x,,x 2 ) (B.I) i
where, n is the number of events in a region A and the sum is over all pairs (x,x.2 ) of events 3
which are apart up to distance t. k(x1,x2) is a correction factor for edge effects. Consider the

circle centered on x, passing through x., see Fig. B-1. If this circle is completely within

region A then k = 1. Otherwise, 11k(x,x 2) is the proportion of the circumference of the

circle within region. i
Particularly, when a region A is rectangle with side a and b ( a < b ), Ohser & Stoyan 3

(1981 ). considering the whole region, classified the distance measure as belonging to one of

four cases, whereas, Diggle (1983), considering practical uses, grouped the distance i
measure in two cases. Ripley (1985) expanded these cases to irregular shaped regions and

suggested a generalized graphical method.

i
i

I
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Figure B-I: Graphical Method for Edge-correction

1.2 Eldge-correction h Toroidal Shift Method

Original toroidal shifting (Lotwick & Silverman, 1982) was used when evaluating an

independence test of bivariate point processes. We can use this idea when we calculate the

second moment. Assume that the region of interest is rectangle with sides a and b ( a < b ).

Wrap the region onto a torus both in the x- and y-direction. Thus there are no edges.

Calculate distance between two events as follows where we assume x(x,,x,), Y(YPY2)

t( x,y )= I/1ji (.V -- 12+ IJ (V -, J2 (B.2)

where.

, (s) = ri (Is /i-Is ) (B.3)

and calculate the second moment, K(t), with derived distance t. Here, K(t) is unbiased for

all I < to = min(a,/ )/2.
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Appendix C I
USER MANUAL AND LIST FOR "POINT" AND "FIBER"

C.1 Introduction

For the analysis of mapped fracture patterns, two different programs are needed:

" POINT : a program with which mid noi-nt behavior of mapped patterns and
various point processes are analyzed.

" FIBER : a program which analyzes trace length hehavior using a hierarchical
concept.

In addition, a mathematical subroutine package called IMSL is used when generating n

random numbers and simulating basic distribution functions. Calculation of trace length n

distributions is done with program TDIST. Lastly, simulations of trace patterns using a

termination probability are performed with program TERMN. These programs are installed 3
both on the JVN super computer CYBER 205 and on the Micro-VAX Il at MIT. All

programs are based on FORTRAN 77. n

C.2 Input Manual for Program POINT I

Program POINT generates pseudo-random numbers, and from these, calculates inter- i

event and nearest-neighbor distances. It also computes second-moments of mapped data

and simulation patterns. Free-format is used for all input data except for the title. Except

for a default input data file (unit 5), an additional input data file is required when dealing

with an inhomogeneous Poisson point process modelling and a doubly stochastic process

modelling. In this case, the input file unit is 8.

I. TITLE (20A4)

2. IOPTN : analysis options 3
I Inter-event distance analysis

2 Nearest-neighbor distance analysis i
I



-180-

3: Both I & 2

4: Second-moment analysis

5 : Inhomogeneous Poisson point process model

6: Marked point process model

7 : Doubly stochastic ( Cox ) point process model

3. If IOPTN = 7, then read ANGLE ( in degrees ). If not, skip, where ANGLE is
a direction with which the angular second-moment is calculated.

4. NOPNT, NOSIM, NSTEP, IMAPP

" NOPNT: No. of points generated

" NOSIM : No. of simulations including analysis of mapped pattern

" NSTEP : No. of calculation steps when evaluating the distance-based
measurement

" IMAPP = 0 : consider simulations only when checking validity of a
model

" IMAPP = 1 : consider simulations and mapped pattern when checking
validity of a model

5. DSTEP : distance step length

6. KXCLS, KYCLS : No. of divisions in X- and Y-direction, respectively

7. XBOT, XTOP, YBOT, YTOP : boundary coordinates for X- and Y-direction

8. If IOPTN = 5, read values of curve-fitting parameter and options

XVALI, XVAL2, YVAL1, YVAL2, CONST: parameters

JOPTN, IKERN

" JOPTN : analysis options

I : inter-event distance analysis

2: nearest-neighbor distance analysis

3 : second-moment analysis

* IKERN

I fixed kernel function measure

2: linear kernel function measure

SIGMA : standard deviation of a fixed kernel function (input unit = 8)
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COORD(IOPNT,I ): X-coord. ; COORD(IOPNT,2) : Y-coord. (input unit
8)

where, IOPNT = 1 through NOPNT

9. If IOPTN = 6, read IDUMM, COORD(IOPNT, 1), COORDkIOPNT,2),
TRACE(IOPNT)

" IDUTMM: dummy value3

" COORD(IOPNT, I): X-coord.

" COORD(IOPNT,2): Y-coord.3

" TRACE(IOPNT) : trace length

10. If IOPYTN = 7, read option NOJOB and coefficients

" NOJOB

NOJOB = 1I Cox process with bivariate normal distribution function3

NOJOB = 2: simulation of Cox process using angular second-moment
analysis3

NOJOB = 3 calculation of angular second-moment

" XCOF2, YCOF2, FMULT, XVARI, YVARI, IPRIN (input unit = 8)3

XCOF2 X-dir. spectral density coefficient

YCOF2: Y-dir. spectral density coefficientI

WVAR I, YVARI : standard deviation for X- and Y-direction

IPRIN = 0: no printout ; = I print the results

" DUMMY, DUMMI, IDUTMM: dummy values

* COORD(IOPNT,1): X-coord.

COORD(IOPNT,2): Y-coord.3

11. If IMAPP # 0 and IOPTN 3, read coordinates of mapped pattern ;If not
skip

COORD(IOPNT, 1): X-coord. ; COORD(IOPNT,2): Y-coord.I

IOPNT = I through NOPNT
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C.3 Input Manual for Program FIBER

Program FIBER evaluates the hierarchical fiber ( Line - segment ) process which is a

realization of the given mapped pattern.

1. TITLE (20A4)

2. NOPNT, NOFPT, NOLPT, NOSIM, NSTEP, DSTEP, SIGMA, TSTEP

* NOPNT : No. of total fibers ( or mid points)

* NOFPT: No. of fibers in the 1 st set

* NOLPT : No. of fibers in the 2nd set

* NOSIM: No. of simulations iterated

* NSTEP: No. of steps when calculating the statisti"

9 DSTEP : distance step size

* SIGMA standard deviation of the line-kemel function

* TSTEP : unit of segment in a fiber

3. XBOT, XRANG, YBOT, YRANG

* XBOT: X-coord. of starting boundary

* XRANG: range of X-coord.

* YBOT: Y-coord. of starting boundary

e YRANG : range of Y-coord.

4. IOPTN, JOPTN, LOPTN

IOPTN = 0 do not enter the point process

IOPTN = 1: bivariate kernel function method

IOPTN =2 independence test

IOPTN = 3 : orientation correlation option

IOPTN = 4: MLE for orientation data

JOPTN = 0 • do not enter the fiber process

JOPTN = I • MLE for line-kernel function method

JOPTN = 2 • MLE for nearest-neighbor fibers

JOPTN = 3 : simulation of set 2 with line-kemel function method

JOPTN = 4 • simulation of set 2 with nearest-neighbor distance method

I
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LOPTN = I1: calculate the bivariate second-moment5

LOPTN = 2 :calculate the univariate second-moment

5. If IOPTN = 2 ; read coordinates of mid points of all fibers3

" COORD(IOPNT,l), COORD(IOPNT,2) :X- and Y-coord. of the mid

" ISHET; analysis option

ISHFT I small perturbation test

ISHFT =2 toroidal shift test

6. If IOPTN = 3 ;read ANGLE and coordinates of fibers

* ANGLE: step angle magnitude in degree

* COORD(IOPNT,l). COORD(IOPNT.2) :X- and Y-coord. at starting
point of fiberI

COORD(IOPNT,3), COORD(IOPNT,4) X- and Y-coord. at ending
point of fiber3

7. If IOPTN = 4 ; read coordinates of fibers of 2nd set and option MOPTN

" COORD(IOPNT,l), COORD(IOPNT,2) X- and Y-coord. at starting

point of fiber

COORD(IOPNT,3), COORD(IOPNT,4) X- and Y-coord. at ending
point of fiberI

" MOPTN: orientation distribution option

MOPTN I 1 Von Mises distribution on a circle5

MOPTN =2 wrapped normal distribution on a circle

8. If JOPTN :5 2, read XLAMO: distance measure at staring pointI

9. If JOPTN * 0, rea.. coordinate of I1st set of fibers
*COORD(IOPNT,l), COORD(IOPNT,2) :X- and Y-coord. at starting
point of fiber

COORD(IOPNT,3), COORD(IOPNT,4) X- and Y-coord. at ending
point of fiber

10. If JOPTN = 1, = 2 or =3 :read coord. of 2nd set of fibers
*COORD(IOPNT.1), COORD(1OPNT,2) X- and Y-coord. at startingI
point of fiber

COORD(IOPNT,3), COORD(IOPNT,4) X- and Y-coord. at ending
point of fiber
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C.4 Input Manual for Program TDISTI
Prog,'am TDIST estimates the trace length distribution using MLE. Currently, only

the exponential form of the distribution is considered.

1. TRACE(IOPNT, 1), TRACE(IOPNT,2), NCONF(IOPNT)I TRACE(IOPNT, 1) : trace length for IOPNT-th trace

* TRACE(IOPNT,2) : boundary length for IOPNT-th trace

* NCONF(IOPNT) = I trace length with both ends observable
NCONF(IOPNT) = 2• trace length with one end observable

NCONF(IOPNT) = 3: trace length with no end observable

2. NITER : No. of iterations ( currently input as 1 )

3. NOPTN : analysis option ( currently input as 1 )

C.5 Input Manual for Program TERNIN

Program TERMN generates the trace pattern according to the simulated typical

points. Also, it evaluates the termination points from calculated termination probabilities.

1. NOPNT, NOFPT, NOSIM, VMEAN, AMEAN, SIGMA, TRUNL

3 e NOPNT• No. of mid points generated

* NOFPT : No. of mid points of 1 st set

i o NOSIM: No. of simulation performed

o VMEAN : mean trace length of set 2

3 * AMEAN mean k strike ) angle of set 2

o SIGMA standard deviation of angle of set 2

I o TRUNL• truncation length of set 2

2. XBOT, XTOP, YBOT, YTOP : coordinate of simulation boundary

3. MOPTN orientation distribution option

MOPTN = : : Von Mises distribution

i MOPTN = 2: wrapped normal distribution

4. read coordinate of 1st set CORFP

I
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CORFP(IOPNT, 1), CORFP(IOPNT,2) : coordinate at starting point of fiber

CORFP(IOPNT,3), CORFP(IOPNT,4) : coordinate at ending point of fiber

5. IDUMM, COORD(IOPNT,1 ), COORD(IOPNT,2)

* IDUMM : dummy value

" COORD(IOPNT, I): X-coord. of mid point of 2nd set 3
" COORD(IOPNT,2): Y-coord. of mid point of 2nd set

C.6 Program Listings: POINT, FIBER, TDIST, TERMN i

PROGRAM POINT

CCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C PROGRAM POINT GENERATES PSEUDO-RANDOM NUMBERS & C
C CALCULATE INTER-EVENT , NEAREST EVENT DISTANCES C
C AND SECOND-MOMENT OF THE C

C SIMULATION DATA AS WELL AS MAPPED DATA C

C C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
• YRANG, OCCLS, KYCLS, KTCLS, ANGLE, NOANG

DIMENSION KK(20000), AA(30000), TITLE(20) I
C
C COORD : COORDINATE OF MID-POINT (NOPNT, 2)
C RSCLE : NO. OF GENERATED RANDOM NUMBER (2*NOPNT) I
C NOFRE : NO. OF DISTANCE FREQUENCES IN A SIMULATION (NOSIM,NSTEP)

C DISTS : DISTANCE MEASURE { 0.5*NOPNT*(NOPNT-1) }

C RVAR = 30000
NIVAR = 20000

C
NDOFN = 2

READ (5,800) TITLE
800 TORMAT(20A4)

WRITE(6,800) TITLE
C I
C I ANALYSIS OPTION IOPTN
C 1 INTER-EVENT DISTANCES
C 2 NEAREST NEIGHBOR DISTANCES

C 3: BOTH 1 & 2
C 4 : SECOND MOMENT MEASURE DISTANCE
C 5 INHOMOGENEOUS POISSON P.P.
C 6 MARKED POINT PROCESS
C 7 : DOUBLY STOCHASTIC P.P.
C

n
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C 1.1 ANGLE OF MEASUREMENT IN DEGREE : ANGLE

C ( OPTIONAL WHEN IOPTN 7

C
C 2 NO. OF MID-POINTS : NOPNT

C 3 NO. OF SIMULATIONS INCLUDING MAPPED DATA : NOSIM

C 4 NO. OF DISTANCE STEPS : NSTEP

C 5 FLAG INDEX IMAPP : IMAPP
C 0 SIMULATIONS ONLY
C 1 INCLUDE A MAPPED PATTERN

C 6 DISTANCE STEP USED IN STATISTIC : DSTEP

C
NOANG = 1

READ (5,*) IOPTN
WRITE(6,900) IOPTN
IF ( IOPTN.EQ.7 ) THEN

READ (5,*) ANGLE
NOANG = 360 / ANGLE
WRITE(6, 980) ANGLE

ENDIF
READ (5,*) NOPNT, NOSIM, NSTEP, IMAPP

WRITE(6,910) NOPNT, NOSIM, NSTEP, IMAPP
READ (5,*) DSTEP
WRITE(6,920) DSTEP

C
C KXCLS = NO. DIVISIONS IN X-DIR.
C KYCLS = NO. DIVISIONS IN Y-DIR.
C USED IN INHOMOGENEOUS POISSON POINT PROCESS
C IF IOPTN.NE.5, SET POCCLS = KYCLS = 1

C
READ (5,*) KXCLS,KYCLS
WRITE(6,970) KXCL - ,KYCLS
NTOTL = NDOFN * NOPNT
NTOVL = NOPNT * (NOPNT-1) 2

NTOST = NOSIM * NSTEP

NTOSI = NOSIM * NOPNT

KTCLS = KXCLS * KYCLS

NSECT = NSTEP * NOANG

C
C DYNAMIC DIMENSIONING
C

NRI = 1
NR2 = NRI + NTOTL
NR3 = NR2 + NTOTL
NR4 = NR3 + NTOVL

C
C DFREQ = ( NOSIM,NOPNT )
C SIMUL = ( KTCLS,2 )
C

NR5 = NR4 + NTOSI

NR6 = NR5 + KTCLS*2
C
C SVALU = ( NOSIM,NSTEP ) USED IN SECOND MOMENT MEASURE

NR7 = NR6 + NTOST

NR8 = NR7 + NOPNTI
I
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NR9 = NR8 + NSECT

Nil = 1
N12 = Nil + NTOST

C
NRTOT = NR9 - 1
NITOT = N12 - 1

IERRO = 0

WRITE(6,930) NRTOT, NRVAR

IF ( NRVAR.GT.NRTOT ) GO TO 20
WRITE (6, 940)
IERRO = IERRO + 1

20 CONTINUE

WRITE(6,950) NITOT, NIVAR
IF ( NIVAR.GT.NITOT ) GO TO 30

WRITE (6,960) U
IERRO = IERRO + 1

30 CONTINUE
IF ( IERRO.GT.0 ) STOP i

DO 40 IVARI = 1,NRVAR
40 AA(IVARI) = 0.

DO 50 IVARI = 1,NIVAR U
50 KK(IVARI) = 0

C
C IF BOTH INTER-EVENT AND NEAREST NEIGHBOR DISTANCE

C METHOD ARE USED, OPEN TAPE10
C

IF ( IOPTN.GE.3 ) THEN

OPEN (10,FILE='TAPE10' ,FORM=' UNFORMATTED', STATUS=' NEW') I
ENDIF

C
C CALL MAIN OPTION 3
C

CALL MAINS (AA(NRl), AA(NR2 ), AA(NR3 ), AA(NR4 ), AA(NR5 ),
* AA(NR6 ), AA(NR7 ), AA(NR8 ), KK(NI1 ))

900 FORMAT (//, 5X,'ANALYSIS OPTION = ,
* 7X,' ( : INTER-EVENT DISTANCES ) , ,
* 7X, ( 2 : NEAREST EVENT DISTANCE ) , /

* 7X,'( 3 : BOTH 1 & 2 OPTIONS ) , / I
* 7X,'( 4 : 2nd MOMENT MEASURE ) , /
* 7X, ( 5 : INHOMOGENEOUS POISSON P) , /
* 7X, ( 6 : MARKED POINT PROCESS ) , /i

* 7X,' ( 7 : DOUBLY STOCHASTIC P.P. ) , /) I
910 FORMAT (//, 5X,'NO. Or MID-POINT GENERATED =

* 5X,'NO. OF SIMULATIONS = ,13,/,
* 5X,'NO. OF DISTANCE MEASURES =

* 5X,'MAPPED PATTERN INDICATOR = ',13,/,
* 7X,' 0 : SMPLE SIMULATIONS ) , /,
* 7X,' ( 1 : MAPPED DATA INCLUDED ) , /, i

* II)

920 FORMAT ( /, 5X,'DISTANCE STEP SIZE - ',F7.3,/)
930 FORMAT ( I, 5X,'REAL STORAGE REQUIRED - ',17, 3

I
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* /, 5X,'REAL STORAGE SPECIFIED = ',17

940 FORMAT ( /, 3X,'*** INCREASE STORAGE FOR REAL ARRAYS ')
950 FORMAT ( I, 5X,'INTEGER STORAGE REQUIRED = ',17,

* /, 5X, 'INTEGER STORAGE SPECIFIED = ' ,17

960 FORMAT ( /, 3X,'*** INCREASE STORAGE FOR INTEGER ARRAYS')
970 FORMAT (//, 5X,'NO. OF SUBSET IN X-DIRECTION = ',13,

*/, 5X,'NO. OF SUBSET IN Y-DIRECTION = ',13,

980 FORMAT (//, 5X,'ANGLE OF MEASUREMENT = ',F5.1,' DEG.'
C

STOP
END

Ccc

SUBROUTINE MAINS ( COORD, RSCLE, DISTS, DFREQ, SIMUL, SVALU,
* TRACF, ANMM, NOTRE)

C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,

* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT, 2), RSCLE (NTOTL), DISTS (NTOVL),

* NOFRE(NOSIM,NSTEP), DFREQ(NOSIM,NOPNT),
* SIMUL(KTCLS, 2), SVALU(NOSIM,NSTEP), TRACE (NOPNT),

* ANMOM (NOANG, NSTEP)
C
C READ SIMULATION PATTERN SIZE
C

READ (5,*) XBOT,XTOP,YBOT,YTOP
XRANG = XTCP - XBOT

YRANG = YTOP - YBOT

C
C ANALYSIS OPTION
C

GO TO (100,200,300,400,500,600,700) IOPTN

CC INTER-EVENT DISTANCE ANALYSIS
C

100 CONTINUE
CALL INTER ( COORD,RSCLE,DISTS,NOFRE
GO TO 800

C
C NEAREST NEIGHBOR DISTANCE ANALYSIS
C

200 CONTINUE
CALL NEARS ( COORD,RSCLE,DISTS,NOFRE,DFREQ )
GO TO 800

C
C BOTH INTER-EVENT & NEAREST NEIGHBOR DISTANCES

C
300 CONTINUE

CALL INTER ( COORD,RSCLE,DISTS,NOFRE
CALL NEARS (COORD,RSCLE,DI.. 1TS,NOFRE,DFREQ
GO TO 800

CI
I _ _ _ _ _
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C SECOND-MOMENT MEASURE METHOD

400 CONTINUE

CALL SMSTA ( COORD, RSCLE, SVALU
GO TO 800

C
C INHOMOGENEOUS POISSON POINT PROCESS
C

O00 CONTINUE
CALL IHPPS ( COORD,RSCLE,DISTS,SIMUL,NOFRE,DFREQ,SVALU I
GO TO 800

C
C MARKED POINT PROCESS
C MARK : TRACE LENGTH OF EACH JOINT
C

600 CONTINUE
CALL MPPSS ( COORD,TRACE,SVALU )
GO To 800

C

C DOUBLY STOCHASTIC POINT PROCESS

C
700 CONTINUE

CALL DOUBL ( COORD,RSCLE,DISTS,SIMUL,NOFRE,DFREQ, SVALU,ANMOM
CI

800 CONTINUE

RETURN
END

C
SUBROUTINE INTER ( COORD,RSCLE,DISTS,NOFRE

CI
C SUNROUTINE INTER CALCULATES THE INTER-EVENT DISTANCE
C ANALYSIS
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, MXCLS, KYCLS, KTCLS, ANGLE, NOANG

DIMENSION COORD(NOPNT,2), RSCLE(NTOTL), DISTS(NTOVL),
* NOFRE (NOSIM, NSTEP)

C
JOSIM = 1

C
NPSIM = NOSIM
IF ( IMAPP.GT.0 ) NPSIM = NOSIM - 1

IOSIM = 1
DSEED = SECNDS(0.0) * 100.

C
C GENERATE MID-POINT COORDINATE USING RANDOM NUMBER
C GENERATOR OF IMSL (GGUBS)
C

10 CONTINUE
CI

CALL GGUBS ( DSEED, NTOTL, RSCLE
DO 20 IDOYN = 1,NOPNT
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JDOFN = IDOFN *2 -2

KDOFN = IDOFN *2

COORD (IDOFN, 1) =XBOTM + RSCLE (JDOFN) * XRANGI ZOORD (IDOFN, 2) =YBOTM + RSCLE (KLcFLN) * RN
C

IF (I)SIM.EQ.1 )THENI WRITE (6, 930) (COORD(IDOFN, IODOF) ,IODOF1,2)
ENDIF

CI C 20 CONTINUE

C CALCULATE INTER-EVENT DITANCES

C
CALL INDIS ( JOSIM,COORD,NOPNT,DSTEP,NSTEP,N;OFRE,DISTS,

* NOSIM,NTOVL)

IF ( IOSIM.LT.NPSIM ) THEN
IOSIM = IOSIM + 1

JOSIM = JOSIM + 1
GO TO 103 C ENDIF

C MAPPED PATTERN ANALYSIS

C

IT ( IMAPP.GT.0 )THENI DO 50 IOPNT =1,NOPNT

DO 50 IDOFN =1,NDorN

COORD(IOPNT,IDOFN) = 0.

50 CONTINUE

DO 60 IOPNT =1,NOPNT

READ (5,*) (COC RD(IOPNT,IDOFN), IDOFN=1,NDOFN

C

C IF IOPTN = 3, SAVE COORD. DATA FOR LATER USE
C

IT ( IOPTN.EQ.3 ) WRITE(10) COORD(IOPNT,1),COORD(IOPNT,2)

60 CONTINUE
C

IOSIM = NOSIM

CALL INDIS CIOSIM,COORD,NOPNT,DSTEP,NSTEP,NOFRE,

END IF

CIC CALCULATE MIN. &MAX NO. OF DISTANCE MEASURE
C

IF ( NOSIM.EQ.1 )STOP

MTOTL = 0
WRITE (6, 940)
DO 40 ISTEP = 1, NSTETI MINNO = NOrRE(1,ISTEP)
MAXNO = NOFRE(1,ISTEP)

MTOTL = NOFRE(1,ISTEP)

DO 30 IOSIM = 2,NPSIM

IF ( NOFRE(IOSIM,.ISTEP).LT.MXNNO
* MINNO = NOFRE(IOSIM,ISTSP)



IF ( NOFRE(IOSIM,ISTEP) .GT.MAXOO
* MAXNO = NOFRE(IOSIM,ISTEP)

MTOTL zzMTOTL + NOFRJE(IOSIM,ISTEP)

HMINV = MINNO3

HMAXV = MAXNO
HAVRG = MTOTL
NMINV = HKINV /NTOVL
HMAXV = HMAXV /NTOVLI
HAVRG = HAVRG /(NTOVL *NPSIM

DSTNS = DSTEP *ISTEPI

C

HEXAT = 0.3

IF ( XRANG.EQ.YRANG ) THEN
HEXAT = 3.1415 * DSTNs**2 - 8*DSTNS**3 /3 + DSTNS**4/2

ELSE

HEXAT = HAVRGI
END IF

C MAPPED PATTERN CASEI

C

IF ( IMAPP.GT.0 ) THEN
PAMAP = NOFR2E(NOSIM,ISTEP)
PAMAP = PAMAP / NTOVLU
WRITE (6, 950) DSTNS, HMINV, HMAXV, HEXAT, PAMAP

GO TO 40
END IF1

WRITE (6, 950) DSTNS, HMINV, HMAXV, HEXAT

40 CONTINUE

930 FORMAT ( 5X,2(D15.7,2X))

940 FORMAT (,1OX,'INTER-EVENT DISTANCE METHOD

*5X, 'DISTANCE MIN. VALUE MAX. VALUE EXACT',

*~ MAPPED', I
950 FORMAT ( 5X,F7.3,5X,4(F7.5,3X)

RETURN

c ENDI
CC

SUBROUTINE INDIS ( IOSIM,COORD,NO'NT,D)STEP, NSTEP,NOFRE,
* DISTS,NOSIM,NTOVL

C

C SUBROUTINE INDIS CALCULATES INTER-EVENT DISTANCES OF

C MID-POINTS
C

C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION COORD (NOPNT, 2), NOFRE (NOSIM,NSTEP), DISTS (NTOVL)

NPOIN = NOPNT-1

ICOUN = 0
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NCOUN = NOPNT * (NOPNT-1) / 2
FSTEP = DSTEP

C
DO 10 IPOIN = 1,NPOIN
XCOOR = COORD(IPOIN,1)
YCOOR = COORD(IPOIN,2)
KPOIN = IPOIN + 1
DO 10 JPOIN = KPOINNOPNT
ICOUN = ICOUN + 1
XCOR1 = COORD(JPOIN,l)
YCOR1 = COORD(JPIN,2)
DISTS (ICOtJN) = SQRT ((XCOOR-XCOR1) **2+ (YCOOR-YCOR1) **2)

10 CONTINUE
C
C CALCULATES THE FREQUENCIES OF DISTANCE CATEGORIES
C

KCOUN = 0
20 CONTINUE

JCOUN = 0
KCOUTN = KCOUW + 1
FSTEP = DSTEP * KCOUN
Do 30 ICOUN = 1,NCOUN
IF ( DISTS(ICOUN).LE.FSTEP )THEN

JCOUN = JCOUN + 1
ENDIF

30 CONTINUE
12OFRE(IOSI,KCOUN) =JCOUN

IF ( KCOUN.LT.NSTEP )GO TO 20
RETURN
END

cc
C

SUBROUTINE NEARS ( COORD, RSCLE, DISTS,NOFRE, DFREQ
C
C SUBROUTINE NEARS COMPUTE NEAREST NEIGHBOR DISTANCE
C oF GIVEr EVENT
C
C IMPLICIT DOUBLE PRECISION (A-.H,O-Z)

COM4ON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG

DIMNSION COORD (NOPNT, 2), RSCLE (NTOTL), DISTS (NTOVL),
* NOFRE(NOSIM,NSTEP), DFREQ(NOSIM,NOPNT)

C
C INITIALIZE
C

DO 110 ICOOR = 1,NOPNT
DO 110 IDOYN = 1,NDOFN
COORD(ICOOR,IDOFN) = 0.

110 CONTINUE
DO 120 ITOTL = 1,NTOTL
RSCLE(ITOTL) = 0.

120 CONTINUE
Do 130 ITOVL = 1,NTOVL
DISTS(ITOVL) = 0.
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130 CONTINUE
DO 140 LOSIM = 1 'NOSIM

DO 140 LSTEP = I,NSTEPI

C140 CONTINUE

REWIND 10
C

JOSIM = 13

IF ( IMAPP.GT.O ) NPSIM =NOSIM - 1
IOSIM = 1

DSEED = SECNDS(0.0) * 100.03

C GENERATE MID-POINT COORDINATE USING RANDOM NUMEP
C, GENERATOR or IMSL jGGU8S)

10 CONTINUE
CALL GGUBS ( DSEED, NTOTL, RSCLE
DO 20 IDOFN = 1,NOPNT
JDOFN = IDOFN * 2 - 1I
KDOFN = IDOFN * 2
COORD (IDOFN, 1) = XBOT + RSCLE (JDOFN) * XRANG

COORD(IDOFN,2) = YBOT + RSCLE(KDOFN) * YRANGI
20 CONTINUE

C
C CALCULATE NEAREST NEIGHBOR DISTANCE3

CALL NEDIS ( IOSIM,COORD,NOPNT,DSTEP,NSTEP,NOFR,DISTS,
* NOSIM, NTOVL, XRANG, YRANG, DFREQ,AVRGD

IF ( IOSIM.LT.NPSIM ) THENI

GO TO 10
ENDIF

CI
C MAPPED PATTERN ANALYSIS
C

IT ( IMAPP.GT.0 ) THEN

DO 30 IOPNT = 1,NOPNT
DO 30 IDOFN = 1,NDOFN
COORD(IOPNT,IDOFN) = 0.

30 CONTINUE
IF ( IOPTN.EQ.2 ) THEN

DO 40 IOPNT =1,NOPNT

READ (5,*) ( COORD(IOPNT,IDOFN), IDOFN=1,NDOFrN)
40 CONTINUEI

ELSE
WRITE (6, 992)

DO 45 IOPNT =1,NOPNTI
READ (10) ( COORD(IOPKT,IDOFN), IDOFN=1,NDOFrN)

45 CONTINUE
END IF

CI
TOSIM = NOSIM
CALL NEDIS 1,IOSIM, COORD, NOPNT, DSTEP, NSTEP, NOFrRZ,3
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* ~DISTS, NOSIM, NTOVL, XPANG, YRANG, DFREQ,
* AVRGD)

AVRGD = AVRGD /(NOPNT *(NOPNT -1

ENDIF
C
C CALCULATE MIN. £MAX NO. OF DISTANCE MEASURE
C

IT ( NOSIM.EQ.1 )STOP
C

WRITE (6, 940)
DO 60 ISTEP = 1,NSTEP
MINNO = NOFRE(1,ISTEP)
MAXNO = NOFRE(1,ISTEP)
DO 50 IOSIM = 2,NPSIM
IF ( NOFRE(IOSIM,ISTEP).LT.MINNO

* MINNO = NOi'RE(IOSIM,ISTEP)
IF ( NOFRE(IOSIM,ISTEP).GT.MAXNO

* MAXNO = NOFRE(IOSIM,ISTEP)
50 CONTINUE

C
HMINV = MINNO
HMAXV = MAXNO
HMINV = HMINV /NOPNT
HMAXV = HMAXV /NOPNT

DSTNS = DSTEP *ISTEP

C AVERAGE VALUE OF SIMULATED DATA
C

PAVRG = 0.
DO 70 IOSIM = 1,NPSIM

PAVRG = PAVRG + NOFRE(IOSIM,ISTEP)
70 CONTINUE

PAVRG = PAVRG /(NPSIM * NOPNT
C
C MAPPED PATTERN

C
IF ( IMAPP.GT.0 ) THEN

PAMAP = NOFRE(NOSIM,ISTEP)
PAMAP = PAMAP / NOPNT
WRITE (6, 950) DSTNS, NMINV, NMAXV, PAVRG, PAMAP
GO TO 60

ENDIF
C

WRITE(6, 950) DSTNS,HMINV,HMAXV,PAVRG

60 CONTINUE

C CALCULATE MONTE-CARLO STATISTIC

IF ( IMAPP.GT.0 ) THEN
RMINV = AMAXi (XRANG, YRANG)
RMAXV = 0.
WRITE (6, 9 60)

NRITE(6, 965) AVRGD

DO 100 IOSIM = 1,NOSIM



CSTAT = 0.
RSTAT = 0.
DO 90 ISTEP = 1,NSTEPI
JSTAT = 0
ZSTAT = NOTRE(IOSIM,ISTEP)

DO 80 JOSIM = 1,NOSIMI
IF ( JOSIM.EQ.IOSIM ) GO TO 80

JSTAT = JSTAT + NOFRE(JOSIM,ISTEP)
80 CONTINUE

XSTAT = JSTATI
XSTAT = XSTAT I(NOPNT 1

CSTAT = (( ZSTAT -XSTAT )/NOPNT )**2

RSTAT = RSTAT + CSTATI
90 CONTINUE

IF (IOSIM.NE.NOSIM.AND.RSTAT.LE.RMINV )RMINV = RSTAT
IF (IOSIM.NE.NOSIM.AND.RSTAT.GE.RMAXV )RMAXV = RSTAT

WRITE (6, 970) IOSIM,RSTATI
100 CONTINUE

WRITE (6, 980) RMINV,RMAXV,RSTAT
ENDIF

C940 FORMAT (,10X,'NEAREST NEIGHBOR DISTANCE METHOD '/

* X, 'DISTANCE MIN. VALUE MAX. VALUE AVERAGE',

* 'I MAPPED', I
950 FORMAT ( 5X,F7.3,5Xf4(F7.5,5X)
960 FORMAT (I,3X,'*** MONTE-CARLO STATISTIC',!!)
965 FORMAT ( 5X,'SAMPLE MEAN',6X,Fl5.7,/)
970 FORMAT ( 5X,'STATISTIC ',15,' = ',F15.7)I
980 FORMAT (I,3X,'EXTREME VALUES OF SIMULATION',/,

* 5X,'MIN. VALUE OF STATISTIC = ',Fl5.7,/,
5X,'MAX. VALUE OF STATISTIC = 'F57/

*5X,'MAPPED VALUE = ',F15.7
992 FORMAT (/'MAPPED COORD IN NEARS '/

RETURN

ENDI

C
SUBROUTINE NEDIS ( IOSIM, COORD, NOPNT, DSTEP, NSTEP, NOFRE,3

* DISTS,NOSIM, 1TOVL,XP.ANG,YP.ANG,DFREQ,
* AVRGD

C
C SUBROUTINE NEDIS MEASURES THE NEAREST OTHER EVENTI

C WITHIN A DISTANCE OF GIVEN EVENT

C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION COORD (NOPNT,2), NOFRE(NOSIM,NSTEP), DISTS (NTOVL),I
* DrREQ (NOSIM, NOPNT)

C

NPOIN = NOPNT - 1I
NCOUN = NOPNT - 1
FSTEP = DSTEP

DISHN - AMAXi (XR.ANG, YRANG)I
DISZ4X = 0.
AVRGD = 0.3
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C
C DISTANCE CALCULATION

I C DO 10 IPOIN = 1,NOPNT
ICOUN = 1
XCOOR = COORD(IPOIN,l)
YCOOR = COORD (IPOIN, 2)
DO 20 JPOIN = 1,NOPNT

IT ( JPOIN.EQ.IPOIN ) GO TO 20
XCOR1 = COORD(JPOIN,l)
YCOR1 = COORD (JPOIN, 2)
DISTS (ICOUN) = SQRT ((XCOOR-XCOR1) **2+ (YCOOR-YCOR1) **2)

CIC CALCULATE AVERAGE NEAREST NEIGHBOR DISTANCE
C

IF ( IOSIM.EQ.NOSIM ) THEN

EDFAVRGD = AVRGD + DISTS(ICOUN)

C
IF ( DISTS(ICOIN) .LE.DISMON ) DISMON = DISTS(ICOUN)
IF ( DISTS(ICOUN).GE.DISMX ) DISMX = DISTS(ICOUN)

C oICOUN = COUN+ 1DITCEAEGIS

1CONTINUE

C CU

FSTEP = DSE0 CU
D0 ON40IPNUE 1NO

JCOUN = COUN + 1

40CONINUE

IF ( FREQ(IOSIM, IP~4) ONEF P TE

ENDI
CC COTIU

C OR(OIJON CU

C

C SUBROUTINE IHPPS SIMULATES NON-HOMOGENEOUS POISSON POINT PROCESS
C WHEN MAPPED POINT PATTERN DO NOT FOLLN HOMOGENEOUS POISSONIC POINT PROCESS
C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)

*COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,

* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, HOlING
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DIMENSION COORD (NOPNT, 2) ,RSCLE(NTOTL) ,SIMUL(KTCLS, 2),
* DISTS (NTOVL) ,NOFRE (NOSIM,NSTEP) ,DFREQ(NOSIM,NOPNT),

* SVALU (NOSIM, NSTEP)I
C

REWIND 10

XCRIT = 0.5
C

C READ CURVE-FITTING PARAMETERS

READ (5,*) XV 1XVAL2,Y'VALl,Y~VAL2 ,CONST

C JOPTN = 1 :INTER-EVENT DISTANCE METHOD3

C 2 :NEAREST NEIGHBOR DISTANCE METHOD
C 3 :SECOND-MOMIENT MEASURE METHOD

C IKERL = 1 : FIXED KERNEL FUNCTION bMASURE
C 2 : LINEAR KERNEL FUNCTION

READ (5,-) JOPTN,ICERLq
WRITE (6, 990) JOPTN, IKERL

C
C JITRT IS USED IN FIXED KERNEL FUNCTION OPTION

C JITRT = 1 READ COORDINATES or GIVEN MAP

C
JITRT = 1

IXREG = XRANG ) / KCLS
IYREG = (YP.ANG )/KYCLS

NPSIM = NOSIM, - 1
IOSIM =0

C CU

ICOUN = 0I

DO 35 IYCLS = 1,KYCLS
JCOUN = JCOUN + 1

YRSUS = XYREG * IYCLS
YPSUS - IYREG * ( IYCLS - 1
VALUE = (XVALI + XVAL2*IXCLS)*IXCLS + (YVALI+YVAL2*IYCLS)*IYCLS
RAMBD = EX ( VALUE + CONST )*NOPNTI
ILAMB = RAM!BD
XLAMB = PRhNBD - ILANB
IF ( XLAM.GE.XCRIT) ILAMD ILAME + 1

ICOUN -ICOUN + ILAMB
KCOUN - ICOUN -ILAM[B + 1

C

SIMfUL(JCOUN,1) =JCOUN

C
NOSUS = ILAMB NDOFN

C
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IITER = 1
DO 20 JLAMB = KCOUN,ICOUN
IDOFN = IITER * 2 - 1

JDOFNDOTNbfll =: XBOT + RSCLE(IDOFN) XRN

COR(JLAM,2)=YSS+RCEJON YE
IITER = IITER + 1

20 CONTINUE

C35 CONTINUE

IF ( ICOUN.EQ.NOPNT ) GO TO 120
IRENG = NOPNT - ICOUN
NTOJM = KYCLS - 1
DO 50 K = 1,NTO.JM

SUMA = SIbIUL(K,2)

IRESI = K

DO 60 L = KP,KTCLS
IT ( SUb24A.GT.SIMUL(L,2) )GO TO 60
SUMMAP = SIMUL(L,2)I IRESI = L

60 CONTINUE
DISTi = SIMUL(IRESI,1)
DIST2 = SIMfUL(IRESI,2)I SIMUL(IRESI,l) = SIMUL(K,l)
SIMUL(IRESI,2) = SIMUL(K,2)
SlbfUL(K,1) = DISTI
SIMUL(K,2) = DIST2

70 CONTINUE

10 CONTINUE

I C120 CONTINUE
ZOSIM = IOSIM + 1
ICOUN = 0
MCOUN=0
DO 90 IYCLS = 1,KCYCLS

JCOUN = 0
MCOUN = MCOUN + 1
YPSUS = IYREG * ( IYCLS-1
DO 85 LCOUN = 1,KYCLS
XCOUN = MCOUN
IT ( SIMUL(LCOUN,1).EQ.XCOUN )GO TO 86

85 CONTINUE

86 CONTINUE
VALUE = (XVAL1+XVAL2*IXCLS) *IXCLS+ (YVALI+YVAL2*IYCLS) *IYCLS
RAMBD = EXP ( VALUE + CONST )*NOPNT
ILAMS - RbMD
XLAMB = RAMBD - ILAMB
IF (XLAbU. GE. XCRIT ) ILAMD = ILAND + 1
IT SIMUL(LCOUN,2) .GE.100. )ILJAMB - ILAMB + 1

C
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C MODIFY DENSITY ACCORDING TO KERNEL FUNCTION
C

C IF ( IKERL.EQ.1 ) THENI
DENSE = FLOAT(ILAMB) / ( XRANG*IYREG

ELEDENSE = FLOAT(ILAMB) / FLOAT(NOPNT)I
ENDIF

C
ICOUN = ICOUN + ILAbM
KCOUN = ICOUN -ILAMB + 1I

C
C NOSUS = ILAMB NDOTN

CI
NOSUS = 2

88 CONTINUE
CALL RANDP ( NOSUS,RSCLE,IXCLS,IYCLS,IOSIM

C CALCULATE X-DIR. INTENSITY FUNCTION

XVALU = RSCLE () XRANGI
C

IF ( IKERL.EQ.1 )THEN
CALL KERNEL (NOPNT, XVALU, VALUE, JITRT
JITRT = JITRT + 1I

ELSE
CALL CURVE ( XVALU, VALU E

END IF

PINTE = VALUE / DENSE

IF ( RSCLE(l).LE.PINTE ) THEN
COORD(KCOUN,l) = XBOT + RSCLE(l) * XRANG
COORD(KCOUN,2) = YPSUS + RSCLE(2) * XYREG
KCOUN = KCOUN + 1
JCOUN = JCOUN + 1I

ENDIF
IT ( JCOUN.LT.ILAMB ) GO TO 88

C 0 COTIU
C

IT ( IOSIM.EQ.1) THEN3
KCONT = KCOUN - 1
WRITE(6,910) KCONT
DO 40 IOPNT =1,NOPNT

1fRITE(6, 920) (COORD(IOPNT, IDorN) , IDoNm1,NDorN)I40 CONTINUE
END IF

GO TO ( 210,220,230 ) JOPTN
210 CALL INDIS ( IOSIM,COORD,NOPNT,DSTEP,NSTEPNOFRE,

* DISTS, NOSIl, NTOVL
GO TO 240

220 CALL NEDIS ( IOSIM,COORD,NOPNT,DSTEP,NSTEP,NOFRE I* DISTS, NOSIA, NTOVL, XRANG, TRANG, DrRzQ,
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* AVRGD
GO TO 240

C230 CALL SMSTT ( IOSIM,COORD,SVALU

240 CONTINUE

IT (:OSIM.LT.NPSIM ) GO TO 10

C MAPED PATERNANALYSIS
CIBRE WIND 8

READ (8,*) SIGMA
DO 110 IOPNT = 1,NOPNT

READ (8,*) ( COORD(IOPNT,iDorN),IDOFN=1,(Dorw)I110 CONTINUE
IOSIM =NOSIM
GO TO (250, 260, 270 ) JOPTN

250 CALL INDIS ( IOSIM,COORD,NOPNT,DSTEP,NSTEP,NOFRE,
* DISTS,NOSIM,NTOVL
WRITE (6, 950)
GO TO 280

260 CALL NEDIS ( IOSIM,COORD,NOPNT,DSTEP,NSTEP,NOFRE,
* DISTS, NOSIM, NTOVL, XRANG, YRANG, DFREQ,

* AVRGD)
AVRGD = AVRGD /(NOPNT *(NOPNT - 1I WRITE (6, 930)
GO To 280

270 CALL SMSTT ( IOShIM,COORD,SVALU)I 280 CONTINUE
C
C GO TO SUB. KSTAT IN SECOND-MOI4ENT MEASURE CASE

I IF ( JOPTN.EQ.3 )THEN
CALL KSTAT (SVALU,NOPNT,NOSIM,NSTEP,DSTEP
GO TO 300I ENDIT

DO 150 ISTEP = 1,NSTEP
MTOTL = 0
MINNO = NOFRE(1,ISTEP)
MAXNIO = NOTRE(1,ISTEP)

MTOTL = NOFRE(1,ISTEP)I DO 130 105134 = 2,NPSIM
IT NOFRE(IOSIM,ISTEP) .LT.MINNO ) I4INNO = NOFRE (IOSIM, ISTEP)
IT (NOFrRE(IOSIM,ISTEP).GT.MAXNO ) MPJONO = NorRE(105134,ISTEP)
MTOTL = MTOTL + NOFRE(IOSIM,ISTEP)I130 CONTINUE

C
FIMINV = MINNO
IO4AXV = 3EAXNO

IF ( JOPTN.EQ.1 ) THEN
NSTST = NTOVL

ELSEI NSTST = NOPNT
END IF
HEXAT = 0.
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HAVRG = MTOTL
HMINV = HMINV /NSTST3
HMAXV = HMAXV /NSTST
pAVRG = HAVRG /(NTOVL * NPSIM
HEXAT = HAVRG

DSTNS = DSTEP *ISTEP

C

C AVERAGE VALUE OF SIMULATED DATA

C
PAVRG = 0.
DO 140 1031)4 = 1,NPSIM
PAVRG = PAVRG + NOFRE(IOSIM,ISTEP)

140 CONTINUE

PAVRG = PAVRG / tPSIM - NOPNT)

C
C MAPPED PATTERN
CI

PAmAP = NOFRE(NOSIM,ISTEP)
PAmAp = PAMAP / NSTST
IF ( JOPTN.EQ.1) THENI

WRITE (6, 940) DSTNS, HMINV, HMAXV, HEXAT, PAMAP
ELSE

WRITE (6, 940) DSTNS, MI1NV, HMAXV, PAVRG, PAMAPI

150 CONTINUE
300 CONTINUE3

C MONTE-CARLO STATISTICS
C

WRITE (6, 960)

DO 180 1031)4 = 1,NOSIM
CSTAT = 0.
RSTAT = 0.
DO 170 ISTEP = 1,NSTEP3
JSTAT = 0
IF ( JOPTN.EQ.3 ) THEN

ELEZSTAT = SVALU(IOSIM,ISTEP)

ZSTAT = NOTF(IOSIM,ISTEP)
ENDIF

Do 160 JOSIM = 1,NOSIM
IF (joSIM.EQ.IOSIM ) GO TO 160
IF (JOPTN.EQ.3 ) THEN

xsTAT =XSTAT + SVALU(JOSIM,ISTEP)U
ELSE

JSTAT =JSTAT + NOFRE(JOSIM,ISTEP)
ENDIF

160 CONTINUE

IF ( JOPTN.NE.3 )XSTAT =JSTAT

XSTAT = XSTAT / (NOPNT -1 )
CSTAT = (( ZSTAT -XSTAT )/NOPNT )**2I
RSTAT = RSTAT + CSTAT

170 CONTINUE
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C
IF ( IOSIM.EQ.1 ) THEN

RMINV = RSTAT
RZ4AXV = RSTAT

ENDIF
C

IFT IOSIM.NE.NOSIM.AZID.RSTAT.LE.RMINV )RM.INV = RSTAT
IF (IOSIM.NE.NOSIM.AND.RSTAT.GE.RMAXV )RMAXV = RSTAT

WRITE(6,970) IOSIM,RSTAT
180 CONTINUE

WRITE (6, 980) RMINV, RMAXV, RSTAT
RETURN

CI910 FORMAT (//,5X,'INHOMiOGENEOUS POISSON POINP PATTERN',//,
* ~5X,'TOTAL NO. OF !4.D-POINT GENERATED '1,/

920 FORMAT (7X,2(F15.7,3X))
930 FORMAT (//,7X,'INHOMOGENEOUS POISSON POINT PROCESS', II * /,9X,'NEA.EST NE7jHBOR DISTANCE STATISTIC',//,

*5X,'DISTANCE MIN. VALUE MAX. VALUE AVERAGE',
* ' MAPPED', II 940 FORMAT ( 5X,F7.3,5X,4(F7.5,5X)

950 FORMAT (//,7X,'INHOb§OGENEOUS POISSON POINT PROCESS', I
* /,9X,'INTER-EVENT DISTANCE STATISTIC', I
*5X,'DISTANCE MIN. ',iALUE MAX. VALUE AVERAGE',

* ' MAPPED',1/
960 FORMAT (//,7X,'*** MONTE - CARLO STATISTICS *,/
970 FORMAT ( 5X,'STATISTIC',I5,' = ',F15.3)
980 FORMAT (//,3X,'EXTREME VALUES OF SIMULATION', I1X'I.VLEO TAITC='F53/

* 5X,'MIN. VALUE oF STATISTIC = f,F15.3,/,

*5X,'MAPPED VALUE = ',F15.3I990 FORMAT (//,5X,'ANALYSIS OPTION = If 13,
* I/,7X,' ( 1 INTER-EVENT DISTANCE METHOD
* /,7X,' ( 2 NEAREST NEIGHBOR DISTANCE METHOD)'
*I, 7X,' ( 3 SECOND MOM[ENT MEASURE METHODI * //,5X,'KEP.NEL FUNCTION OPTION - ',I,

*//, 7X,'I( 1 FIXED KERNEL FUNCTION
* /,7X,' ( 2 LINEAR KERNEL FUNCTION

cc END
CC

SUBROUTINE RANDP (NOSUS, RSCLE, IXCLS, IYCLS,IO0511)

C SUBROUTIN R.ANDP GENERATE PSUDO-RANDOM NUMBER
C USING IMSL LIBRARY

DIMENSION RSCLE (NOSUS)
C

IF ( IYCLS.EQ.1.AND.IOSIM.EQ.0I * DSEED = SECNDS(0.0) * 100.0
C

CALL GGUBS ( DSEED,NOSUS,RSCLE

RETURN
END
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cc

C SUBROUTINE CURVE ( XVALU,VALUE)I

C
C SUBROUTINE CURVE CALCULATE CURVE FITTING COEFFICIENTS

C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C

FUNC1 = EXP( -..5*( (XVALU-3. )/1.2 )**2

FUNCi = o.368*F..NC1/( 1.2*2.5I
FUNC2 = EXP( -o.5*( (XVALU-9.2 )/2.03)**2)
FUNC2 = 0.86 *FUNC2/( 2.03*2.5)

FUNC3 = EXP( -0.5*( (XVALU-13.4 )/O.86)**2

FUNC3 = O.14*FUNC3 1(0.86 * 2.5)
FUNC4 = EXP( -o.5*( (XVALU-22.65)/O.93 )**2
FUNC4 = 0.42*FUNC4/(O.93 * 2.5)
FUNC5 = EXP( -O.5*( (XVALU-34.35 )/4.3 )**2)
FtYNC5 = 1. '*FUNC5/(4.3*2.5)I
FUNC6 = EXPt -0.5*( (XVALU-44.7 )/4.4 )**2)
FUNC6 = 0.41*FUNC6/(4.4*2.5)
VALUE = FUNC1 + FUNC2 + FUNC3 + FUNC4 + FUNC5 + FUNC6I
RETURN
END

SUBROUTINE KERNEL ( NOPNT, XVALU, VALUE, JITRT
C
C SUBROUTINE KERNEL EVALUATE FIXED KERNEL FUNCTION OFI
C ANY GIVEN DATA POINT IN X-DIRECTION
C

C IMPLICIT DOUBLE PRECISION (A-H,O-Z)I
DIMNSION COORD (106, 2)

C
IF ( JITRT.EQ.1 ) THEN

C
C READ STANDARD DEVIATION OF THE KERNEL FUNCTION
C

READ(8,*) SIGMA

C READ COORDINATES OF GIVEN MAP

DO 10 IOPNT = 1,NOPNT
READ (8,*) (COORD(IOPNT,IDOFrN) ,IDOFN=1,2)

10 CONTINUE

WRITE (6, 920) SIGMA
ENDIF

PITWO, = 6.283185
DO 20 IOPNT = 1,NOPNT
XMZAN =COORD (IOPNT, 1)
FUNCT =EX? ( -0.5* 1 (XVALU - XM~AN)/SIQ4A)**2)I
VALUE =VALUE + FUNCT /(SQRT(PITWO)*SIGMA

C
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C CONSIDER EDGE EFFECTS
C

IF ( XOMEAN.LE.20. .OR.XMEAN.GE.30. ) THEN
FUNCT = EXP ( -0.5*( (XVALU + XMEAN)/SIGAA)**2
VALUE = VALUE + rUNCT /(SQRT(PITw0)*sIGMA

END IF
20 CONTINUE

VALUE = VALUE / NOPUT
C

920 rOIU4AT(//,5X,'STD. DEV. IN XEIR2ML FUNCTION = ',r5.3,//)
RETURN
END

cc
C

SUBROUTINE SMSTT ( IOSIM, COORD, SVALU, AZIMOM, NOJOB
C
C SUBROUTINE SMSTT EVALUATE SECOND-MOMENT STATISTIC OF
C HAPPED DATA
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
C

COON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG

DIMENSION COORD(NOPNT,2), SVALU(NOSIM,NSTEP),
* ANMOM(NOANG, NSTEP)

C
NPSIX = NOSIM - 1
NPPNT = NOPNT - 1
CNSTV = 1.

C
DO 30 ISTEP = 1,NSTZP
SVALU(IOSIM,ISTEP) = 0.
DO 30 IOAMG = 1,NOANG
ANMON(IOANG,ISTEP) = 0.

30 CONTINUE
C
C CALCUL.ATE WEIGHTING COEFFICIENT w(X,u)
C

DO 20 IPOIN - 1,NOPNT
XCOOR = COORD(IPOIN,l)
YCOOR = COORD(IPOIN,2)
DISTI = AMIN1 ( XCOOR, (XRANG - XCOOR)
DIST2 - AZ4IN1 ( YCOOR, (YRANG - YCOOR))
SQDIS = DISTI**2 + DIST2**2
DO 10 JPOIN - 1,NOPNT
IF ( JPOIN.ZQ.IPOIN ) GO TO 10
XCOR1 = COORD(JPOIN,l)
YCOR1 - COORD(JPOrN,2)
DISTO - SQRT ((XCOOR-XCOR1) **2+ (YCOOR-YCOR1) **2)
WEIGT - 0.
ISTZP - DISTO / DSTZP + 1
IF (ISTEP.GT.NSTEP ) GO TO 10
1F DISTO**2.LE.SQDIS ) THEN

DIST3 = ACOS( CNSTV * AMIN1(DIST1,DlSTO) / DISTO)
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DIST4 = ACOS( CNSTV * AMINI(DIST2,DISTO) / DISTO)
WEIGT = 1. - ( DIST3 + DIS'T4 )/ 3.14159

ELSE IIT CS NT IT IT
DIST3 = ACOS( CNSTV * DIST2 DISTO

EDTWEIGT = 0.75 - ( DIST3 + DIST4 ) / 6.28318

WEIGT = XRANG * YRANG /(WEIGT * (NOPNT)**2)

C CALCULATE X FUNCTION

C
SVALU(IOSIM,ISTEP) = SVALU(IOSIM,ISTEP) + N'EIGT

C CALCULATE ANGULAR K-FUNCTIONI

C
IF (NOJOB.NE.3 ) GO TO 10
IF (IOSIM.EQ.NOSIM ) THEN

ANGL2 = ATAN ( (YCORl-YCOOR) /(XCOR1-XCOOR)
IF( ANGL2.LT.0. ) THEN

ANGL1 = 360. + ANGL2

IF ( XCORl.LT.XCOOR )ANGL1 = 180. + ANGL2I
ELSE

ANGLI= ANGL2
IFT XCORl.LT.XCOOR )ANGL1 = 180. + ANGL2

ENDIFI
IOANG =ANGLI/ ANGLE + 1
WEIGT =XRtANG *YP.ANG / ( NOPNT**2

EirANMOI4(IOANG,ISTEP) = ANMOK(IOANG,ISTEP) + WEIGTI

C
10 CONTINUE

20 CONTINUEI
C
C CUMULATIVE K FUNCTION

90 CONTINUE
DO 40 ISTEP = 1,NSTEP
ADDTV = 0.

IF ( ISTEP.EQ.1 ) GO TO 40I

C
ADDTV = SVALU (IOSIM, KSTEP)

SVALU(IOSIM,ISTEP) = SVALU(IOSIM,ISTEP) + ADDTV
40 CONTINUE

C

C IF ( ioSim.NE.NOSIM ) RETURNI

C CUMULATIVE ANGULAR K-FUNCTION

IF ( NOJOB.NE.3 )RETURNI

DO 70 JOANG - 1, NOANG
DO 60 ISTZP - 1, NSTEP

ADDTV - 0.I
IF ( ISTEP.ZQ.1) GO TO 60
KSTZP - ISTEP-1
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ADDTV = ANMOM (JOANG, KSTEP)
ANMOI4(JOANG,ISTEP) = AIIMOMf(JOANG,ISTEP) + ADDTV

60 CONTINUE
70 CONTINUE

RETURN
END

cc
C

SUBROUTINE KSTAT (SVALU, NOPNT, NOSIM, NSTEP, DSTEP, XRANG, YRANG, A1O,
* ANGLE,NOANG,NOJOB

C
C SUBROUTINE KSTST INTERPRET THE K FUNCTION
C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)
C

DIMENSION SVALU(NOSIM,NSTEP), ANMOM(NOANG,NSTEP), ANCOV(100)
C
C FIND MIN. & MAX. VALUE OF SIMULATED DATA
C

AREAT = XRANG *YRANG

XLAMlB = NOPNT /AREAT
XLM2= yTLAM[B 2

C
WRITE (6, 910)
NPSIM = NOSIM -1

PHI-U = 3.141592
C

DO 20 ISTEP = 1,NSTEP
STOTL = 0.
IF (NOJOB.EQ.3) GO TO 15
SMINV = SVALU(1,ISTEP)
SMAXV = SVALU(1,ISTEP)
STOTL = SVALU(1,ISTEP)
DO 10 I051K = 2,NPSIM
IFT SVALU(IOSIM,ISTEP).LT.SMINV )SKINV = SVALU(IOSIM,ISTEP)
IFT SVALU(IOSIM,ISTEP) .GT.SMARXV )SMAXV = SVALU(IOSIM,ISTEP)
STOTL = STOTL + SVALU(IOSIM,ISTZP)

10 CONTINUE
SAVRG = STOTL / NPSIM

C
C MAPPED PATTERN
C

15 CONTINUE
C

SMAPP = SVALU(NOSIM,ISTEP)
C
C STABILIZE THE K VALUE
C

DSTNS = DSTEP * ISTEP
DSTS2 = DSTNS **2
SMINV = SMINfV - PHIVU*DSTS2
SMAXV = SMIAXV - PHIV'U*DSTS2
SAVRG = SAVRG - PHIVU*DSTS2
SMAPP - SMAPP - PHIVU*DSTS2

C
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IF (NOJOB.EQ.3) THEN

WRITE (6, 920) DSTNS, SVALU (NOSIM, ISTEP)
ELSEI

WRITE (6, 920) DSTNS, SNINV, SMAXV, SAVRG, SMALPP

END Ir
20 CONTINUE

IF ( NOJOB.NE.3 ) RETURN
C
C CALCULATE ANISOTROPIC COVARIANCE FUNCTION

WRITE (6, 930)
NOAN1 = NOANG /2

NSTP1 = NSTEP -13

DO 25 ISTEP = 1,NSTEP
DO 26 IOANG = 1,NOAN1

JOANG = WANG + NOAN1
ANMOM(IOANG,ISTEP) = ANMOM(IOANG,ISTEP) + ANMlOM(JOANG,ISTEP)

26 CONTINUE
DO 27 KANGL = 1,18

ANMOM(KANGL,ISTEP) = ANMOM(KANGL,ISTEP) *18.I

27 CONTINUE
DSTS2. = DSTEP * ISTEP
SVUTN = SVALU(NOSIZ4,ISTEP)I
THERY = PHIVU * DSTS1**2

25 CONTINUE
C WRITZ6,95I

WRITE (6, 950)

XLAMB = NOPNT / AREAT
ANGCT = 1.

DO 70 ISTEP = 2,NSTEP
JSTEP = ISTEP 1 2
DSTNS = JSTEP *DSTEP

C N0 =INO(,SE)-AMM4JTP
ANC02 = ANMOM(1,ISTEP) - ANMOM(1,JSTEP)

DKrUN = SVALU(NOSIM,ISTEP) -SVALU(NOSIM,JSTEP)

CoEF2 = PHIVU *DSTNS * 2. *DSTEPI

C
ANCOl = ANC01 COEF

ANC02 = ANC02 /COMF
DKFUW = DKFUN /COEY2

COVAl = ANC01 1.
COVA2 = ANC02 -1.I

COVA3 = D~rUN -1.

WRITE (6, 980) DSTNS,ANCO1,ANCO2,PKrUN,COVA1,COVA2,COVA3

70 CONTINUEI

910 rORJAT(//,7X,'INHObSOGENEOUS POISSON POINT PROCESS', /
* /,7X,'SECOND-MOMENT MEASUREMENT STATISTIC',//,

* 3X,'DISTANCE MIN. VALUE MAX. VALUE',I
* 2X,'AVERAGE MAPPED K-ft COVARIANC', 1

920 FORMAT( 2.x,V.3,lx,5(r.3,lX),rl5.6)
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930 FORMAT(//,7X,'ANGULALR K - FUNCTION',/,5X,'DIST.',
*2X,'K(40) K(130) K(MAPPED) K(ISO.)'/)

950 FORMAT (II, 7X, 'ANGULAR K-MOMNT MEALSURE' ,/)
970 FORMAT(//,5X,'COVARIANCE FUNCTION',/,

7X,' DIST. COV(z,40.) COV(r,130) COV(r,360.)',/)

C980 FORMAT(2X,F6.3,6(F9.5,lX))

RETURN
END

CC

SUBROUTINE SMSTA ( COORD,RSCLE,SVALU
CIC SUBROUTINE SMSTA CALCULATE SECOND MOMENT MEASURE DISTANCE
C OF MID-POINT MAP
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,

* YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG
DIMENSION COORD (NOPNT, 2), RSCLE (NTOTL), SVALU (NOSIM, NSTEP)

NPSIM = NOSIM
IF ( IMAPP.GT.0 ) NPSIM = NOSIM - 1

DSEED = SECNDS(0.0) * 100.

C
C GENERATE MID-POINT COORDINATE USING RANDOM NUMBER

C GENERATOR OF IMSL ( GGUDS
C

WRITE (6, 900)I10 CONTINUE
CALL GGUBS ( DSEED, NTOTL,RSCLE
DO 20 IDOFN = 1, NOPNT
JDOFN = iDoFN *2 - 1I KDOFN = IDOFN *2
COORD (IDOFN, 1) =XBOT + RSCLE (JDOFN) * XRANG
COORD (IDOFN, 2) =YBOT + RSCLE (KDOFN) * YRANG

IF ( IOSIM.EQ.1 )THEN
WRITE (6, 910) (COORD(IDOFN, ZODOF) , ODOF-1,2)

ENDIF

20 CONTINUE
C
C CALCULATE SECOND-MOMENT MEASURE
C

CALL SMSTT ( IOSIM, COORD, SVALU)

CI IF ( IOSIM.LT.NPSIM ) THEN
IOSIM =n 1051) + 1
GO TO 10

END IF

C MAPPED PATTERN ANALYSIS
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C
IFT IMAPP.GT.0 ) THEN

DO 50 IOPNT = 1,NOPNTI
DO 50 mDomN = 1,NDOFN

COORD(IOPNT,IDOFN) = 0.
50 CONTINUE

DO 60 IOPNT =1,NOPNT
READ (5,*) (COORD(IOPNT,IDOFN),IDOFN=1,NDOFN

60 CONTINUEI

IOSIM = NOSIM
CALL SMSTT ( 105IM, COCED, SVALU)

ENDIF

C CALCULATE MIN. &MAX. NO. OF DISTANCE MEASURE

C IT ( NOSIM.ZQ.l RETURN

CALL KSTAT ( SVALU, NOPNT, NOSIM, NSTEP, DSTEP, XRANG, YRANG)
C

900 FORMAT (//,5X,'SECOND MOMENT MEASURE DISTANCE METHOD',//)

910 FORMAT ( 2(Fl5.7,5X)
C

RETURN

cc END

CC

SUBROUTINE MPPSS ( COORD,TRACE,SVALU)

C
C SUBROUTINE MPPSS EVALUATE MARKED POINT PROCESS AND
C CALCULATE K-FUNCTION OF MARKS
C

C IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COM3GON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,

* NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,
YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANGI

DIMENSION COOED (NOPNT, 2) ,TRACE(NOPNT),
* SVALU(NOSIM,NSTEP)

C
C READ MID-POINT COORDINATE & TRACE LENGTH
C

TMEAN =0.

DO 5 IOPNT = 1,NOPNTI
READ (7, *) IDum4, (COOED (iopT,IDoN) , iDoFN=1, NDOFN) ,TRACE (IOINT)
TMEAN = TMEAN + TRACE (IOPNT)

5 CONTINUE

TMEAN - THEAN / NOPNTI
WRITZ (6, 999) THEAN
TMEN2 = lW*

C INITIALIZE K-FUNCTION £M.P.P. K-FUNCTIONI

C
Do 30 ISTZP - 1,NSTZP
SVALU(2,ISTEP) - 0.I
SVALU(1,XSTZP) =0.

30 CONTINUE
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C
C CONSIDER EDGE EFFECT
C

Do 20 IPOIN = 1,NOPNT
XCOOR = COORD(IPOIN,l)
YCOOR = COORD(II'OIN,2)
DISTi = AMINi XCOOR, (XRANG - XCOOR))
DIST2 = AMINi YCOOR, (YRANG - YCOOR))
SQDIS =DIST1**2 + DIST2**2
DO 10 JPOIN = 1,NOPNT
IF ( JPOIN.EQ.IPOIN ) GO TO 10
XCOR1 = COORD(JPOIN,1)

YCOR1 = COORD(JPOIN,2)
DISTO = SQRT ((XCOOR-XCOR1) **2+ (YCOOR-YCOR1) **2)
WEIGT = 0.
ISTEP = DISTO / DSTEP + 1
IF ISTEP.GT.NSTEP ) GO TO 10
IF DISTO**2.LE.SQDIS ) THEN

DIST3 = ACOS( AMIN1(DISTI,DISTO) /DISTO)
DIST4 = ACOS( AMIN1(DIST2,DIST0) /DISTO)

ELEWEIGT = 1. - ( DIST3 + DIST4 )/3.14159

ELSE=AOS IS1 DIT
DIST3 = ACOS( DIST2 DISTO

EirWEIGT = 0.75 -(DIST3 + DIST4 )/6.28318

C
SVALU(1,ISTEP) = SVALU(t,ISTEP) + 1. /WEIQT
SVALU(2,ISTEP) = SVALU(2,ISTEP) + 1. /WEIGT

* TRACE (IPOIN) * TRACE (JPOIN)

10 CONTINUE
20 CONTINUEI ULTV tAKDxrNTO

C

WRITE (6, 900)
DO 40 ISTEP = 1,NSTEP
SVALU (2,ISTEP) =SVALU(2,ISTEP) / SVALU(1,ISTEP)
DSTNS = DSTEP *ISTEP

PAIRr = SVALU(2,ISTEP) /TMEN2
PAIRC = SVALU(2,ISTEP) /SVALU(1,ISTEP)
WRITE (6, 910) DSTNS, PAIRC, PAIRFI40 CONTINUE

900 FoRM4AT(//,7X,'MARKED POINT PROCESS',/,
/ ,5X,' DISTANCE CORRELATION r STABILIZED Fr'

910 FoRHAT(5X,3(F1O.3,3X) )
999 FORMAT(//,5X,TbfZAN - ',rl5.7)

RETURNI END

I ~SUBROUTINE DOUBL ( COORD, RSCLE, DISTS, SIML,NOFRE, DFRzQ, svAJU,
AN*



C
C SUBROUTINE DOUBL ESTIMATES THE DOUBLY STOCHASTIC POINT
C PROCESS.
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COM 4ON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
NTOVL, IMAPP, IOPTN, XBOT, XRANG, YBOT,

• YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG

DIMENSION COORD(NOPNT,2), RSCLE(NTOTL), SIMUL(KTCLS,2),
DISTS(NTOVL), NOFRE(NOSIM,NSTEP), i

* DFREQ(NOSIM,NOPNT), SVALU(NOSIM,NSTEP),
• ANMOM(NOANG,NSTEP)

DIMENSION RSCL1 (5000),HCOOR(5000,2)
CI

REWIND 10
IFLAG = 0

JITRT = 1
NPSIM = NOSIM - 1

C
C ANALYSIS OPTION

C NOJOB = 1 DO COX PROCESS WITH BIVARIATE NORMAL KERNEL FUNCTION
C NOJOB = 2 :USING ANGULAR K-FUNCTION SIMULATE THE COX PROCESS
C NOJOB = 3 CALCULATE THE ANGULAR K-FUNCTION

READ (5, *) NOJOB

GO TO ( 5, 100, 35, 5 ), NOJOB

C ITERATE FOR EACH SIMULATIONS3

C

5 CONTINUE
DO 30 IOSIM = 1,NPSIM
IF (NOJOB.EQ.4) GO TO 6
IF ( IOSIM.EQ.1 ) THEN

c
C CALCULATE THE MAX. DENSITY COEFFICIENT IN AN AXI-SYM4ETRICCI
C NORMAL DENSITY FUNCTION.
C

CALL MAXCF ( COEWX, NOPNT, XRANG, YRANG, XBOT, YBOT
c Ci
C GENERATE THE HOMOGENEOUS POISSON POINT PATTERN ACCORDING TO
C THE MAX. DENSITY FUNCTION.
C NOGPT : NO. OF POINTS GENERATED

C
AREAT = XRANG * YRANG

NOGPT = COEMX * AREAT
NOGP2 = 2 * NOGPT
DSEED = 123457.DO

ENDIF

10 CONTINUE
CALL GGUBS ( DSEED, NOGP2, RSCL1
DO 20 IDOFN = 1, NOGPT

JDOFN = IDOFN + NOGPT
HCOOR(IDOFN, 1) = XBOT + RSCL1 (IDOFN) * XRANG
HCOOR(IDOFN, 2) = YBOT + RSCL1 (JDOFN) * YRANG I

I
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20 CONTINUE
CIC DO THINNING PROCESS AND GET A COX PATTERN
C

CALL THINP ( NOGPT, HCOOR, COORD, NOPNT, COEMX, 1031)4,
* XRANG, YRANG, XBOT, YBOTI C 2nd MOMENT ME.ASURE

C
6 CALL PAREN (COORD, IOSIM

CALL SMSTT ( 1051), COOED, SVALU, ANMOM, NOJOB
30 CONTINUEI GO TO 85

C MAPPED PATTERN ANALYSIS

35 CONTINUE
REWIND 8
READ (8, *) DUMMY, DtUhMl, IDUMM
DO 40 IOPNT =1, NOPNTI READ (8,*) (COORD(IOPNT,IDOrN),IDOrN=1,NDOrN)

40 CONTINUE
IOSIM = NOSIM
CALL SMSTT ( 1051), COORD, SVALU, ANNMOI, NOJOB)I C CALL KSTAT (SVALU, NOPNT, NOSIM, NSTEP, DSTEP, XRANG, YRANG, ANM,

I C * ANGLE, NOANG, NOJOB)

IT (NOJOB.EQ.3) RETURN
100 CONTINUE

DO 80 IOSIM =1,NPSIMI CALL SPECT (NSTEP,NOPNT,XRANG,YRANG,COORD, IOSIM,DSTEP)
CALL SMSTT ( OS IM, COOED, SVALU, ANMOM, NOJOB

80 CONTINUE
C

C MAPPED PATTERN ANALYSIS
C

85 CONTINUEI DO 90 IOPNT =1,NOPNT
READ (8,*) (COORD(iopNT,IDoTN), IDOrN=1,NDoFrN)

90 CONTINUE
105114 = NOSIMI CALL SMSTT ( 108114, COOED, SVALU, ANMON, NOJOB

C
CALL KSTAT ( SVALU,NOPNT,NOSIM,NSTEP,DSTEP,XRANG,YRAG,AIMN,

I * E6,10 ANGLE, NOANG, NOJOB

C
C MONTE-CARLO STATISTICI C

WRITE (6, 920)
DO 70 103114 = 1,NOSIM

CSTAT = 0.I ESTAT = 0.
DO 60 ISTEP = 1,NSTEP
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JSTAT = 0

XSTAT = 0.
ZSTAT = SVALU(IOSIM,ISTEP)

DO 50 JOSIM = 1,NOSIM
IF ( JOSIM.EQ.IOSIM ) GO TO 50
XSTAT = XSTAT + SVALU(JOSIM,ISTEP)

50 CONTINUE
XSTAT = XSTAT / ( NOSIM - 1

CSTAT = ( ZSTAT - XSTAT )**2
RSTAT = RSTAT + CSTAT

60 CONTINUE
IF ( IOSIM.EQ.1 ) THEN

RMINV = RSTAT
RMAXV = RSTAT

NITF=
IF ( IOSIM.NE.NOSIM.AND.RSTAT.LE.RMINV ) RMINV = RSTAT
IF ( IOSIM.NE.NOSIM.AND.RSTAT.GE.RMAXV ) RMAXV = RSTAT

WRITE(6,930) IOSIM, RSTAT
70 CONTINUE

WRITE(6,940) RMINV,RMAXV, RSTAT

910 FORMAT(//,5X,'DOUBLY STOCHASTIC POINT PROCESS',// }

920 FORMAT(//,5X,'*** MONTE - CARLO STATISTIC ***',//)
930 FORMAT( 5X,'STATISTIC',15,' = ',F15.3 )

940 FORMAT(//,3X,'EXTREME VALUES OF SIMULATION', I,
* 5X,'MIN. VALUE OF STATISTIC = ',F15.3,/,
* 5X,'MAX. VALUE OF STATISTIC = ',F15.3,/,

* 5X,'MAPPED VALUE = ',715.3 )
Ci

RETURN
END

cc
C

SUBROUTINE COXPP ( NOPNT, XVALU, YVALU, VALUE, JITRT, XRANG, YRANG,
* XBOT, YBOT ) 

I

C SUBROUTINE COXPi EVALUATE THE DOUBLY STOCHASTIC PROCESS

C ( COX PROCESS ) IN A PLANE
C INTENSITY FUNCTION IS ASSUMED TO SYD4ETRIC NORMAL I
C DENSITY FUNCTION.

C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION COORD(39,2), RSCLE(1000)
C
C READ COORDINATES OF THE DATA AT THE FIRST ITERATION

REWIND 8
NOPN2 = NOPNT * 2

PITWO = 6.283185

IF ( JITRT.EQ.1) THEN
C
C READ MEAN VALUE AND STANDARD DEVIATION OF THE NORMAL FUNCTION

C LPOTN : 1 : INHOMOGENEOUS INTENSITY FUNCTION
C 2 : HOMOGENEOUS INTENSITY FUNCTION
C U

I
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READ (8, *) vmEAN,SIGmA,LOPTN
C

IF ( LOPTN.EQ.1 ) THEN
DO 10 IOPNT =1,NOPNT
READ (8,*) (COORD(IOPNT,IDOFN),iDoFN=l,2

10 CONTINUEIELSE DSEED =SECUDS(0.0) * 100.
CALL GGU'BS ( DSEED,NOPN2,RSCLE)
Do 15 IDOFN = 1,NOPNTI JDoFN = IDOFN + NOPNT
COORD(IDOFN,l) = KNOT + RSCLE(IDOrN) * XP.ANG
COORD(IDOFN,2) = YBOT + RSCLE(JDOFN) * YRANG

15 ENI CONTINUE

C

U ENDIF
C
C AXI-SflO4ETRIC BIVARIATE NORMAL DISTRIBUTION FUNCTION

I C VALUE = 0.
DO 20 IOPNT = 1,NOPNT
XMIEAN = COORD(IOPNT,l)IYMEAN = COORD(IOPNT,2)
XVALl = (XVALU - XNE ) **2
YVAL1 = (YVALU - YMEAN )**2
FUNCT = EXP ( -0.5*( XVAL1 + YVAL1 )/SIGblA**2
VALUE = VALUE + FUNCT /(PZTKO*SIGMA**2)

20 CONTINUE
C

C VALUE = VALUE * EA

910 FORMAT(//,5X,'k4EA.N VALUE IN NORMAL FUNCTION = ,S3/

REUR 5X,'STD. DEV. IN NORMAL FUNCTION = ',F5.3,/)

END
cc

SUBROUTINE MAXCF ( COEWC, NOPNT, XRANG, YRANG, KNOT, YBOT)
C
C CALCULATES THE MAX. DENSITY COEFFICIENT OF GIVEN DENSITYIC FUNCTION
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION COEFT(5000)

C XI RN
LYDIR = XRANG + II JITRT = I

C
READ (9,*) IXSTP,IYSTP

coErm = 0.
DO 10 IXCON = 1, LXDIR, IXSTP
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DO 20 ZYCON = 1, LYDIR, IYSTP
XVALU = IXCON
YVALU = IYCON
CALL COXPP ( NOPNT, XVALU, YVALU,VALUE,JITRT, XRANG, YRANG,

* XBOT, YBOT

COErT(JITRT) = VALUE3

C FIN THEMAX.COEFFICIENT
C

IF ( COEFT(JITRT) .GT.COEWC THEN
COEMX = COEFT(JITRT)
IXREG = IXCON
IYREG = ZYCON

ENDIF
JITRT = JITRT + 1.

20 CONTINUE
10 CONTINUE

WRITE(6,910) COEbeC
WRITE(66, 920) IXSTP, IYSTP, IXREG, IYREG,COEWCX

910 FoRmAT(//,5x,'mhx. DENSITY COEFFICIENT = ',rio.4,//)
920 TORMAT(//,5X,'X-DIR. STEP SIZE=',3/

*5X,'Y-DIR. STEP SIZE=',3/
*5X,'APPROX. X-COORD=',3/

5X,'APPROX. Y-COORD =I,3/
*5X,'MAX. DEN. CoEFF. =',r1o.4,/)

C
RETURN
ENDI

cc

SUBROUTINE THINP ( NOGPT, HCOOR, COORD, NOPNT, COEMX, 1051)4,U
* XRANG, YRANG, XBOT, YBOT

C SUBROUTINE THINP EVALUATES THE THINNING PROCESS3
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION HCOOR(5000, 2), RSCLE (1), COORD(NOPNT,2)

C CALL COXPP TO CALCULATE THE DENSITY COEFFICIENT
C

KCOUN = 0

JITRT = 1
40 CONTINUE

JITRT = JITRT + 1
DO 10 IOGPT = 1,NOGPT
XVALU = HCOOR(IOGPT,1)
YVALU = HCOOR(IOGPT,2)
IF ( XVALU.LT.0. ) GO TO 10
CALL COXPP ( NOPNT, XVALU, YVALU, AU, JITRT, XRANG, YRANG, XBOT, YUOT)

C
C CARE FOR A DSEED VALUE IN RADOP ROUTINE

IF ( JITRT.EQ.2 )THEN

CALL RANDP (1, RSCLE, 0, IOGPT, 0
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ELSE
CALL RANPP ( 1, RSCLE, 0, 0, 0I ENDIF

DENSE = VALUE / COEMX
IF ( RSCLE(1) .GT.DENSE ) GO TO 10
KCOUN = KCOUN + 1
DO 20 IDOFN = 1,2
COORD (KCOUN, IDOFN) = HCOOR(IOGPT, IDOFN)

20 CONTINUE

HCOOR(IOGPT,i) = -HCOOR(IOGPT,I)
IF ( KCOUN.EQ.NOPNT ) GO TO 30

10 CONTINUE
30 CONTINUE

C CALCULATE THE EXACT NO. OF POINTS THAT SHOULD BE GENERATED

WRITE (66, 910)JITRT-1, KCOUN
IF ( JITRT.GE.5 ) THEN

WRITE (66, 920) JITRT-I
ENDRETURN

IF ( KCOUN.NE.NOPNT ) GO TO 40
IF ( IOSIM.EQ.1 ) THEN

WRITE (6,930) KCOUN
WRITE (6, 940)
DO 60 JOPNT = IKCOUN
WRITE (6,950) JOPNT, (COORD (JOPNT, IDOFN), IDOFN=1, 2)

60 CONTINUE
ENDIF

C

910 FORMAT(//,5X,'NO. OF ITERKTIONS TO GENERATE THE POINTS 5X'O ONSGNRTD-',13f,* ~5X, 'NO. POINTS GENERATED=',I3/

920 FORMAT(//,5X,'*** TOO MANY ITERATIONS (',12,')',//)
930 FORMAT(//,5X,'NO. OF POINTS GENERATED =
940 FORMAT(//,5X,'DOUBLY STOCHASTIC POINT PATTERNS',/)
950 FORMAT(3X,I3,5X,2(F.L5.7,3X))

RETURN
cc END

C

SUBROUTINE NORML ( NSTEP,NOPNT, XRANG,YRANG, COORD, IOSIM )
C
C THE CORRELATION COEFFICIENTS WITH GGNML ( IMSL ).
C
C IMPLICIT DOUBLE PRECISION (A-HO-Z)

DIMENSION COORD(106,2),RSCLE (1000)
C

REWIND 10

ICOUN = 1
NOTPT = 0
NOGOR = 1
ROGOR = 1.
SIGMA = 0.5
SIGMI = 1.
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KXSTP = XRANG /2
NYSTP = YRANG /4

60 CONTINUE
NOTPT = C

C
DO 20 IYSTP = 1,NYSTP

DO 10 IXSTP = 1,NXSTP
IF ( IOSIM.EQ.1.AND.ICOUN.EQ.1 ) DSEED =123457.00
ICOUN = 2I

C CALL NORMAL RANDOM DEVIATE GENSRATOROF IML
C

CALL GGNML ( DSEED,NOGOR,ROGOR
COEF1 ROGOR*SQRT(0.5)I

C
CALL GGNML ( DSEED,NOGOR,ROGOR
COEF2 =ROGOR *SQRT(0.5)

C CALCULATE THE INTENSITY FUNCTION WITH ABOVE COEFFICIENTS

XLAM1 = NOPNT / ( XRANG *YRANG ) I
XLAMB = XLAH1 + SIGMA**2 *COErl * COEF2
IF ( XLAMB.LT.0. ) XLAMB =0.

XNIOPT = XQJJB * 8.

NOPT1 = XONOPT
IF (NOPT1.GT.0 ) THEN

NOSUS = NOPT1 * 2

CALL GGUBS ( DSEED,NOSUS,RSCLE

YBCOR = (IYSTP - 1 )*4.
DO 40 ILOOP = 1,NOPT1

IDOFN = ILOOP *2 - 1
JDOFN = ILOOP *2

IPOIN = NOTPT + 11.001

IF ( IPOIN.GT.NOPNT ) THENI
NOTPT = NOPNT
GO TO 30

END IF
COORD(IPOIN,1) = XBCOR + RSCLE(IDOTN) * 2I
COORD(IPOIN,2) = YBCOR. + RSCLE(JDOFN) * 4

40 CONTINUE

NOTPT = NOTPT + NOPT1
ENDIF
ICOUN = ICOUN + 1

10 CONTINUE

20 CONTINUEI
C

30 CONTINUE
IF (NOTPT.LT.NOPNT.OR.IYSTP.LT. (NYSTP-1) )GO TO 60
IF ( OSIM.EQ.1 ) THEN

WRITE (6, 920)
Do 50 IPOIN = 1,NOTPT

50 CONTINUEI

END IF
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C
920 FORMAT(//,5X,'COORD. OF POINTS GENERATED BY COX PROCESS',/,

5X,'NO. X-COORD. Y-COORD.',//)
930 FORMAT(5X,I5,2(FlO.3,3X))

RETURN
END

C
SUBROUTINE PAREN (COORD, IOSIM)

C
C SUBROUTINE PAREN EVALUATE THE INTENSITY FUNCTION
C OF THE COX PROCESS USING SYMMETRIC NORMAL
C DISTRIBUTION FUNCTION FOR PARENT - DAUGHTER MODEL.
C ( CURRENTLY, NOT AVAILABLE
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON/CONTR/NDOFN, DSTEP, NTOTL, NOPNT, NOSIM, NSTEP,
NTOVL, IMAPP, IOPNT, XBOT, XRANG, YBOT,
YRANG, KXCLS, KYCLS, KTCLS, ANGLE, NOANG

DIMENSION COORD(NOPNT,2), RSCLE(80)
DIMENSION HCOOR(10,2) ,VALUE(50,40)

C HCOOR(i,j) i = total no. of parent points
C j = ndofn
C
C VALUE(i,j) i = no. of simulations

C j = no. of steps
C

TWOPI = 6.28318
XRANI = 14.
YRAN1 = 14.

IF ( IOSIM.EQ.I) READ (5,*) NOPAR, NOSON, STDEV, DISTL,PADLL
C
C CALCULATE THE INTENSITIES WITH POISSON DISTRIBUTION
C OF THE DATA
C

IF ( IOSIM.EQ.1 ) READ (5,*) DSEEP, MAITN
1 CONTINUE

JPOIN = 0
MODPT = 0
NODAU = 2
NOITN = 0

C
10 CALL GGUBS ( DSEEP, NODAU, RSCLE )

NOITN = NOITN + 1
IF ( NOITN.GT.MAITN ) GO TO 1

C
C GENERATE THE PARENT POINTS
C

HCORX = RSCLE(1) * XRAN1

HCORY = RSCLE(2) * YRAN1
HCOXX = HCORX * 1.5 + 5.5
HCOYY = HCORY - 5.5
HCOR1 - 0.76 * HCOXX - 0.64 * HCOYY
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HCOR2 = 0.64 * HCOXX + 0.76 * HCOYY
IFT HCOR1.LE.XBOT.OR.HCORl.G.XRANG )GO TO 2.0

IFT HCOR2.LE.YBOT.OR.HCOR2.GE,YRANG )GO TO 10

IFT MODPT.GT.0 ) THEN
DO 100 I = 1, MODPT
PADIS = SQRT( (HCORX-HCOOR(I.,l))**2+(HCORY-HCOOR(I,2) )**2)I
IF ( PADIS.LE.PADLL ) GO TO 10

100 CONTINUE
END IF

)EODPT = MODPT + 1
HCOOR(MODPT,1) = HCORX
HCOOR(MODPT,2) = HCORY
IF ( HODPT.LT.NOPAR ) GO TO 10I

C
C GENERATE THE DAUGHTER POINTS

20 CONTINUE
CALL GGUBS ( DSEEP, 2, RSCLE
COORX = RSCLE(1) * XRAN1
COORY = RSCLE (2) * YRAN1I
CORMOC = COORX* 1.5 + 5.5
CORYY = COORY -5.5

CORX2 = 0.76 *CORXOC - 0.64 * CORYYI
CORY2 = 0.64 *CORXOC + 0.76 * CORY
IF (CORX2.LE.XBOT.OR.CORX2.GE.XRANG )GO TO 20
IF (CORY2.LE.YBOT.0R.CORY2.GZ.YRANG )GO TO 20
DO 30 IPOIN = 1, NOPAR
DSTRI = SQRT( (COO1RX-HCOOR(IPOIN,1))**2 +

* (COORY-HCOOR (IPOIN, 2)) **2
IT IPOIN.EQ.1 ) DSMIN = DSTRII
IF (DSTRI.LT.DSMIN )DSMIN = DSTRI

30 CONTINUE
IF ( DSMIN.GT.DISTL )GO TO 203

JPOIN = JPOIN + 1
COORD (JPOIN, 1) = COORX
COORD(JPOIN,2) = COORY
IF ( JPOIN.LT.NOSON ) GO TO 20I
WRITE (6, 920)

C CONSTRUCT THE BIVARIARE NORMAL DISTRIBUTION FUNCTIONI

C
DO 40 ISTEP = 1, NSTEP
VALUE(IOSIM,ISTEP) = 0.

40 CONTINUEI
DO 60 IPONT = 1, NOSON
DO 50 JPONT = 1, NOPAR

* OR(PN,)JCO(?N,))*DISTS = SQRT( ( COORD(IPONT,1).-HCOOR(JPONT,l) )**2 +I

C
ISTEP - DISTS / DSTEP

ISTEP =ISTEP + 1I

IF ( ISTEP.GT.NSTEP ) ISTEP = NSTEP
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XMEAN = HCOOR (JPONT, 1)

YMEAN = HCOOR(JPONT,2)

XVAL1 = (COORD(IPONT,l) - XMEAN )**2IYVALl = (COORD(IPONT,2) - YMEAM )**2
FUNCT = EXP ( -0.5k ( XVAL1 + YVALJ STDEV**2
VALFT = FUNCT / ( TWOPI * STDEV**2
VALUE(IOSIM,ISTEP) = VALUE(IOSIM,ISTEP) + VALFT

50 CONTINUE

60 CONTINUE

I IF ( IOSIM.EQ.1) THEN
DO 70 ISTEP = I,NSTEP
DSTAS = ISTEP * DSTEP
WRITE (6, 910) IOSIM,DSTAS,VALUE (IOSIM, ISTEP)I70 COTIU

END IF

I J =1I+ NOSON
COORD (J, 1) = HCOOR (1,1)
COORD (J, 2) = HCOOR (1,2)

80 CONTINUE
WRITE (6, 920)

DO 90 I=1,NOPNT
CORX3 = COORD(I,l) *1.5 + 5.5
CORY3 = COORD(I,2) -5.5

CORX4 = CORX3 * 0.76 - CORY3 * 0.64

CORY4 = CORX3 * 0.64 + CORY3 * 0.76
COORD(I,1) = CORX4

COORD(1,2) = CORY4
IT ( IOSIM.LE.5 ) THEN

WRITE(6,960) 1, (COORD(I,J),J=-1,2)I ENDIF
90 CONTINUE

CI WRITE (6, 920)

910 FORMAT(5X,'SIM. = ',15,5X,2(Fl5.7,5X)
920 FORMAT(//)
960 FORMAT(5X,15,5X,2(F15.7,3X)

RETURN

cc END

C
SUBROUTINE SPECT ( NSTEP,NOPNT,XRANG,YRANG,COORD,IOSIM,DSTEP)

C SUBROUTINE SPECT CALCULATES THE SPECTRAL DENSITY FUNCTION
C AND DIRECTIONAL INTENSITY FUNCTION.
CIC IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION COORD (39, 2) ,RBCLE(60000) ,COOR1(30000,2),
* XINTE (200), YINTE (400)

I IF ( IOSIM.EQ.l ) THEN
REWIND 8
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READ(8,*) XCOF2, YCOF2, FMULT, XVARI, YVARI,IPRIN
ENDIF
COEFF = 3.14159

FREQL = COEFF / 2.
C

LYLEN =50I

SUM24X = 0.
SUMMY = 0.
MCOUN = 0
Z44CNT = 0
NOTPT = 0

C XRAN1 & YRAN1 ARE THE DIRECTIONAL RANGES or THE MAP

C SHOULD BE CHANGED ACCORDING TO A SPECIFIC MAP CONCERNED
C

XRAN1 = 22.

YRAN1 = 14.I
IF ( IOSIM*.EQ.1 )JCTJNT =0

XLAM1 = NOPNT / (XRAN1 *YPRJN1)

F ( IOSIM.GT.1 )GO TO 100I

C X &Y-DIRECTIONAL SPECTRAL DENSITY FUNCTION
C

C X-COOR & Y-COORI
C

DELOM = COEFF / LYLEN

DO 20 IXSTP = 1,10
XCOOR = FLOAT(IXSTP-1) *3. + 1.5

C
I44CNT = ZMCNT + 1

C

DO 10 KSTEP = 0,LYLENI
MCOUN = XCOUN + 1
OMEGA = -FREQL + KSTEP*DELOK

xsPEC = xCOF2 /(COEFF * ( G**2 + xcoF2**2) I
INUMB = 1
IF ( IOSIM.EQ.1.AND.MCOUN.EQ.1 ) READ (8,*) DSEED
CALL GGUBS ( DSEED, INUMB, RSCLE
THET1 = RSCLE(1) * 2. * COEFFI
XOEF5 = SQRT(2.*XSPC*DELOM) * COS(OMEGA*XCOOR + THETI
SUIb4 = SUHMX + XOEF5

10 CONTINUE

XDENS = ST3MM * XVARI
XINTE(IXSTP) = XDENS
IF (IXSTP. EQ. 1 ) MAX~ = 1 1N
IF IXSTP.EQ.1 )2MAX - 1EN
IF ( DWNS.GT.XWMAX ) THEN

XDMAX = )(DNS

MAXXcD = IXSTP

ENDiF
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C
20 CONTINUE

IDO 40 IYSTP = 1,7
YCOOR = FLOAT(XYSTP 1)*3. + 1.5

STIJhMY = 0.I C DO 30 KSTEP = 0,LYLEN

OMEGA = -FREQL + KSTEP*DELOI(
YSPEC = YCOF2 /(COEFF *(OMEGA**2 + YC072**2))III4Ub[ = 1
CALL GGUBS ( DSEED, INUMB, RSCLE)
THET2 = RSCLE(l) * 2. * COEFF
YOEF5 = SQRT (2. *YSPEC*DELO() * COS (OMEGA*YCOOR + THET2I SUMNY = SUMMY + YOEF5

30 CONTINUE

YDENS = SUMMYr * YVARI
YINTE(IYSTP) = YDENS

IF (IYSTP.EQ.1 )YDMAX = YDENSIIF (IYSTP.EQ.1 )MAXYD = 1
IF (YDENS.GT.YDMAX ) THEN

YDblAX = YDENS
MAXYD = IYSTP

C ENDIF

40 CONTINUE
DO 700 XISTP = 1, 15I CORNX = (IISTP-1.) * 3. + 1.5
CORNY = (IISTP-1.) * 3. + 1.5
XINT1 = XINTE(IISTP) /XDMAXI YINT1 = YINTE(IISTP) /YDMAX
WRITE(6,710) IISTP, CORNX,CORNY,
*XINT1, YINT1

700 CONTINUEI710 FORMAT(SX,'STEP COOED X- Y- ',15,4F10.4)
C

DENMXK ( XDMAX + YDMAX )*FMULT
DENMX1 =XDMAX + YDMAX

READ(9,*) DENCR
WRITE(6, 940) XDMAX,MAXXD,YDMAX,MAXYDI100 CONTINUE
NOGPT = XRAN1 * YRAN1 * DENC

NOGP2 = NOGPT * 2
IF ( IOSIM.EQ.1 ) READ (8,*) DSEE1

CALL GGUBS ( DSEE1,NOGP2,RSCLE
JOGPT = 1

DO 110 IOGPT 1, NOGPT
IDOYN = IOGPT *2 - 1
JDOFN = IOGPT 2

c
CORX1 - RSCLE(IDOFN) * XRAN1 + 5.5

CORYl = RSCLE(JDOrN) * YRAN1 -5.5

CORX2 = 0.76 * CORXi - 0.64 *CORYl
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CR2= 0.64 * CORX1 + 0.76 * CORYl
IT CORX2.LE.O. .OR.CORX2.GE.XRANG )GO TO 110
IT CORY2.LE.O. .OR.CORY2.GE.YRANG )GO TO 110

COOR1(JOGPT,1) = RSCLE(IDOFN) * XRAN1I
COORi (JOGPT, 2) = RSCLE (JDOFrN) * YRAN1
JOGPT = JOGPT + 1

110 CONTINUEI

C
C THINN~ING PROCESS

DENST = 39. /(25. *17.

JNUMB = 2
DO 120 IOGPT =1, JOGPTXTR~ = COR1 IOGP, 1
XTRIl = COOR1(IOGPT,1)

XADD1 = SQRT( XTRI1**2 + YTRI1**2

IXADD = XADD1 * 0.33
IXADD = IXADD + 1
IYADD = YTRI1 * 0.333

IYADD = IYADD + 1I
2OXDEN = XINTE(IXADD)
YYDEN = YINTE (IYADD)
IT ( YYDN.L.0. .OR.XXDEN.LE.O. ) GO TO 120I
XOCDEN = XOCDEN / XMAX
YYDEN = YYEN /YDMAX
XYDEN = XOXDEN +' YYDEN

CALL GGUBS ( DSEE1, JNUMB, RSCLE
C

IT ( XYDEN.GE.DENCR ) THENI

IT NOTPT.GT.NOPNT ) GO TO 150
CX1 COOR1(IOGPT,1) + 5.5

COORD(NOTPT,l) = CX1*0.76 - CY1*0.64I

COORD(NOTPT,2) = CX1*0.64 + CY1*0.76
END IF

120 CONTINUE
C

150 CONTINUE
WRITE (6, 910) IOGPTU
IF ( IOSIM.LE.IPRIN ) THEN

WRITE (6, 920)
DO 160 IOPNT = 1,NOPNT
WRIT(6,930) IOPNT, ( COOkD(IOPNT,IDOFN),IDOFN =1,2)I

160 CONTINUE
END IF

910 FrORMAT(5X,' NO. OF ITERATIONS - ',15)
920 FORMAT(//,5X,'COORD. Or POINTS GENERATED BY COX PROCSS',/,

*5X,'NO. X-COORD. Y-COORD.',//)

930 FORZAT(5X,5,2(r10.3,3X) )I

940 FrORMAT(//,5X,'MAX. X-DIR. INTENSITY - ',F12.5,' AT ',15,
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* /,5X,'MAX. Y-DIR. INTENSITY = ',F12.5,' AT ',15,//)

950 FORMAT(//,5X,'TOTAL NO. OF POINTS GENERATED IN SPECT. = ',I5)
RETURN
END

PROGRAM HIERA
C
CCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C PROGRAM HIERA EVALUATES THE HIERARCHICAL FIBER C
C ( LINE - SEGMENT ) PROCESS WHICH IS A REALIZATION C
C OF THE GIVEN MAP. C
C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMN/CONFL/NOPNT, NOYPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* NTOTL,NDOF2,NSTEP,DSTEP,NDOFN, SIGMA,TSTEP,MAXXW,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT
DIMENSION KK(20000), AA(30000), TITLE(20)

C
C INITIAL SETS OF THE DIMENSION

I C NRVAR = 30000
NIVAR = 20000

NDOFN = 2
NDOF2 = NDOFN * 2
DFACT = 0.

C
READ (5,800) TITLE
WRITE (6,800) TITLE

CI C10 CONTINUE

C READ VARIABLES
C
C NOPNT NO. OF TOTAL MID POINTS IN A MAP
C NOIPT : NO. or TOTAL MID POINTS IN A FORMER SET
C NOLPT : NO. OF TOTAL MID POINTS IN A LATTER SET

C NOSIM : NO. OF SIMULATIONS
C NSTEP : NO. OF STEPS IN CALCULATING THE STATISTIC
C DSTEP : DISTANCE STEP SIZE

C SIGMA : STD. DEV. OF THE LINE - KERNEL FUNCTION
C TSTEP : UNIT OF SEGMENT IN LINE - KERNEL FUNCTION
C OR THE PERTURBATION DISTANCE IN INDEPENDENCE TEST
C

READ (5,*) NOPNT,NOFPT,NOLPT,NOSIM,NSTEP,DSTEP,SIGMA,TSTEP
WRITE (6,910) NOPNT, NOFPT, NOLPT, NOSIM, NSTEP,DSTEP, SIGMA, TSTEP

CC READ BOUNDARY OF THE SIMULATION REGION

I READ (5,*) XBOT,XRANG,YBOT, YRANG
XTOP = XBOT + XRANG
YTOP - YBOT + YRANG
WRITE (6,920) XBOT,XTOP,YBOT,YTOP

C
MAXXCW - 2I



MAXYW = 2 
25

READ (5,*) IOPTN, JOPTN, LOPTN
IF ( JOPTN.GE.3 ) THEN

READ (5,*) XWIND,YWIND,DFACT
MAXXCW = XRANG /XWIND + 1
IdAXYW = YRANG /YWIND + 1

END IF

C DYNAMIC ALLOCATIONI

CNR1 COOED :COOED, OF THE TOTAL TRACES (4 FOR EACH TRACE)I

C NR2 =CORrB :COOED. oF THE FORMER SET to)

C NR3 =SECON :SLOPE oF ALL FIBERS (No. oF FIBERS
C NR4 =TRACE :TRACE LENGTH oF THE FORMER SET

C NR5 =CORLF COOED. oF THE LATTER SET It)
C NR6 = COORL :WORKING ARRAY FOR THE LATTER SET (2 FOR TRACE)
C NR7 = COORr WORKING ARRAY FOR THE LATTER SET (

CNR8 = SVALU VALUES oF THE STATISTIC ( NOSIM,NSTEPI
C NR9 = CPFST CENTER POINTS oF THE WHOLE SET ( NOPNT,2
C NR1O= CPSND CENTER POINTS OF LATTER SET ( NOLPT,2
C NR11= DENTY INTENSITY VARIATION oF LATTER SET (JOPTN=2
C

NTOTL = NDOFN * NOPNT
NTOT2 = NDOF2 * NOPNT

NTFPT = NDoF2 * NOFPTI
NTLPT = NDOF2 * NOLPT
NOSAS = NOSIM * NSTEP
NOWIN = MAXOG( * MAXYW

NR1 = 1
NR2 = NRl + NTOT2
NR3 = NR2 + NTFPT
NR4 = NR.3 + NOPNT
NR5 = NR4 + NOFPT
NR6 = NR.5 + NTLPT

NR7 = NR.6 + NOLPT * 2I
NR8 = NA7 + NOFPT* 2
NR9 = NR8 + NOSAS
NR1O = NR9 + NOPNT * 2

NR11 = NR1O + NOLPT * 2
NR12 = NRll + NOWIN

C

C NIl = 1I

NRTOT = NR12 -1

NITOT = NIl -1
ZERRO = 0

C
WRITE(6,930) NETOT, NRVAR

IF ( NRVAR..GT.NRTOT ) GO TO 20I
WRITE (6, 940)
IERRO = ZERRO + 1

20 CONTINUE
WRITE(6,950) NITOT, NIVARI
IF ( NIVAR.GT.NITOT ) GO TO 30



WRITE (6, 960) 
26

IERRO = IERRO + 1
30 CONTINUEI IF ( IERRO.GT.O ) STOP

C
C INITIALIZE

I C DO 40 IVARI = 1,NRVAR
40 AAIVARI) = 0.

D0 50 IVARI = 1,NIVARI50 KK(IVARI) =0

C
C CALL MAIN

ICALL MAINS (AA(NR1 ) AA(NR2 ),AA(NR.3 ),AA(NR4 ),AA(NR5 )
*AA(NR6 ),AA(NR7 ),AA(NR8 ),AA(NR9 ),AA(NR1O),
* AA(NR11)

800 FORMAT(20A4)
910 FORMAT(//,5X,'NO. OF TOTAL MID POINTS IN A MAP =',T60,15,

*/,5X,'NO. OF TOTAL MID POINTS IN A FORMER SET =',T60,15,
*/,5X,'NO. OF TOTAL MID POINTS IN A LATTER SET =',T60,15,
*/,5X,'NO. OF SIMULATIONS =',T60,15,
*/,5X,'NO. OF INTERPRETATION STEPS =',T60,15,

/,5X,'DISTANCE STEP SIZE =',T60,F6.3,
/,5X,'STD. DEV. OF LINE-KERNEL FUNCTION =',T60,F6.3,

*/,5X,'UNIT OF SEGMENT IN LINE-KERNEL FUNCTION =',T60,F6.3)

920 FORMAT(//,5X,'BOUNDARY OF THE SIMULAITON',
* /,7X,'Y-DIR. BOUNDARY ( FROM TO: ='T02F032)/7,xDR ONAY(FO TO ) = ',T60,2(FlO.3,2X),

930 FORMAT(//,5X,'REAL STORAGE REQUIRED =

* /,5X,'REAL STORAGE SPECIFIED =',15,/)

940 FORMAT(//,5X,'*** INCREASE STORAGE FOR REAL ARRAYS**)
950 FORMAT(//,5X,'INTEGER STORAGE REQUIRED = ,5

* /,5X,'INTEGER STORAGE SPECIFIED = ',15,/)I ~960 FORMAT(//,5X,'*** INCREASE STORAGE FOR INTEGER ARRAYS**)
C

STOP

cc END

CC

SUBROUTINE MAINS ( COORD, CORFD, SECON, TRACE, CORLF, COORL,

* COOP.?, SVALU, CPFST, CPSND, DENTY

C SUBROUTINE MAINS CONTROLS THE MAIN OPTION
C

C IMPLICIT DOUBLE PRECISION (A-R,O-Z)
C0140N/CONFL/NOPNT, NOFPT, NOLPT, XRAG, YRANG, XBOT, YBOT, NOSIM,

* NTOTL,NDOF2,NSTEP,DSTEP,NDOFN,SIGMA,TSTP,MAXXW,
MAXYN, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION COORD (NOPNT, 4), CORYB (NoFPT, 4), SECON (NOPNT),
* ~CORLF (NOLPT, 4), COORL (NOLPT, 2), TRACE (NOFPT),
* ~COOP.?(NOFPT, 2), CPFST (NOPNT, 2), CPSND (NOLPT, 2)I DIMENSION SVALU(NOSIM,NSTEP), DENTY(MAXCCW,MAXYN)

C
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C READ OPTION VARIABLES
C
C IOPTN : MAIN OPTION FOR THE POINT PROCESS
C ( 0 : DO NOT ENTER THE POINT PROCESS
C ( 1 : BIVARIATE KERNEL FUNCTION METHOD )
C ( 2 : INDEPENDENCE TEST FOR SETS
C ( 3 : ORIENTATION CORRELATION OPTION I
C ( 4 : MLE FOR ORIENTATION DATA
C
C JOPTN : MAIN OPTION FOR THE FIBER PROCESS
C ( 0 : DO NOT ENTER THE FIBzR PROCESS I
C ( 1 : MLE FOR LINE - KERNEL FUNCTION
C ( 2 : MLE FOR NEAREST NEIGHBOR FIBERS
C (3 : SIMULATION OF SET 2 WITH L - K
C (4 : SIMULATION OF SET 2 WITH NN F
C
C LOPTN : ANALYSIS OPTION
C 1 : CALCULATE BIVARIATE SECOND MOMENT I
C ( 2 : CALCULATE UNIVARIATE SECOND MOMENT

C
WRITE(6, 910) IOPTN, JOPTN, LOPTNWRITI

Cm
C FIRST, SIMULATE THE FORMER SET USING POINT PROCESS
C

GO TO (10, 20, 30, 30 ), IOPTH

C
C IOPTN = 1 : BIVARIATE KERNEL FUNCTION METHODc1C

10 CONTINUE
GO TO 90

c
c IOPTN = 2 : BIVARIATE INDEPENDENCE TEST
C

20 CONTINUE
CALL INDEP ( COORD, CORFB, CORLF, SVALU, CPFST, CPSND )
GO TO 90

C
C IOPTN = 3 : ORIENTATION CORRELATION OPTION ( BIVARIATE I
C 4 : MLE FOR ORIENTATION DATA
C

30 CONTINUE
CALL ORINT (COORD, TRACE, SECON )

90 CONTINUE
C
C ( 1 : LOG DISTRIBUTION m

C (2 : EXPONENTIAL DISTRIBUTION
C

CALL LENGT ( KOPTN, COOR)
99 CONTINUE

c
IF ( JOPTN.EQ.0 ) RETURN

C SECOND, SIMULATE THE LATTER SET USING FIBER PROCESS

C I
I
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IF ( JOPTN.LE.2 ) READ (5,*) XLAMO
DO 60 IOPNT = 1, NOFPT
READ (5,*) ( COORD(IOPNT,IDOFN), IDOFN = 1, NDOF2

60 CONTINUE
C

GO TO (100, 200, 300, 300 ), JOPTN
C

C JOPTN = 1 MLE OF LINE - KERNEL FUNCTION
C

100 CONTINUE
CALL KFMLE ( COORD, CORFB, SECON, TRACE, CORLF, COORL, SVALU,

* XLAMO)

RETURN

C JOPTN = 2 MLE OF NEAREST NEIGHBOR FIBERS
C

200 CONTINUE
CALL NNMLE (COORD, TRACE, SECON, XLAO
RETURN

C JOPTN = 3 SIMULATION OF SET 2 WITH L - K FUNCTION

C
C JOPTN = 4 SIMULATION OF SET 2 WITH N.N. FUNCTION
CI 300 CONTINUE

CALL FIBRE (COuRD,CPFST,SECON,TRACE, CPSND, COORL, SVALU,
* DENTY

RETURN

910 FORMAT(//,5X,'MAIN OPTIONS :',
* /,7X,'MAIN OPTION FOR THE POINT PROCESS = ',T60, 15,

*/,9X,' ( 0 : DO NOT ENTER THE POINT PROCESS )',
/,9X,' ( 1 : BIVARIATE KERNEL FUNCTION METHOD )',

* /,9X,'( 2 : INDEPENDENT TEST FOR SETS
* /, 9X,' ( 3 : CORRELATION MEASURE OF ANGLE

/,9x,' ( 4 : MLE OF ORIENTATION DATA
//,7X,'MAIN OPTION FOR THE FIBER PROCESS = ',T60,15,

* /, 9X,' ( 0 : NOT CONSIDER THE FIBER PROCESS )',
* /,9X,' ( 1 MLE OF LINE - KERNEL FUNCTION )',
* /, 9X,' ( 2 MLE OF NEAREST NEIGHBOR FIBERS )',
* /,9X,' ( 3 SIMULATION WITH L - K FUNCTION )',
* /,9X,'( 4 SIMULATION WITH N. N. FUNCTION )',

* //,7X,'ANALYSIS OPTION FOR POINT PATTERN = ', T60,I5,
* /,9X,'( 1 : BIVARIATE SECOND MOMENT OPTION )',
C /, 9X,' ( 2 : UNIVARIATE SECOND MOMENT OPTION )'

I END
cc
C

SUBROUTINE FIBRE ( COORD, CPFST, SECON, TRACE, CPSND, COORL, SVALU,
* DENTY)

C
C SUBROUTINE FIBRE EVALUATES THE HIERARCHICAL FIBER MODEL
C WITH LINE - KERNEL FUNCTION.
CI

I



C IMPLICIT DOUBLE PRECISION -H-Z

COMMN/CONFL/NOPNT, NOrPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* NTOTL,NDOF2,NSTEP,DSTEP,NDorN, SIG4A,TSTZP,blM~x ,
* MAXYW, IOPTN, JOPTN, LOPTN, DYACT

DIMENSION COORD (NOPNT, 4), CPrST (NOPNT, 2), SECON (NOPNT),
* ~CPSND (NOLPT, 2), COORL (NOLPT, 2), TRACE (NOFPT)

DIMENSION SVALU (NOS 11, NSTEP), RSCLE (2)
DIMENSION COORW(138,2), DENTY(MAXXW,MAXYW)I

C
C SIMULATE THE SECOND SET USING THE DATA FROM MLE

JITRT = 1
TWOPI = 6.28318
NPLU1 = NOFPT + 1
NPLU2 = NOFPT + NOLPT
XLAX2 = NOLPT / ( XRANG * YpRQ )

C STORE THE MID POINTS DATA FOR SECOND MOMENT ANALYSIS

DO 5 IOPNT = 1, NOFPT
XCOOR = ( COORD(IOPNT,l) + COORD(IOPNT,3) ) /2.
YCOOR = ( COORD(IOPNT,2) + COORD(IOPNT,4) ) /2.I
CPrST(IOPNT1l) = XCOOR

cprST(IOPNT,2) = YCOOR
5 CONTINUE

C READ MID POINT OF THE LATTER SET ( MAPPED DATA

DO 10 IOPNT =NPLU1, NPLU2I
READ (5,*) (COORD(IOPNT,IDOFN), IDOFN=1,NDOF2)
XCOOR = (COORD(IOPNT,l) + COORD(IOPNT,3) )/2.
YCOOR = (COORD(IOPNT,2) + COORD(IOPNT,4) )/2.
JOPNT = IOPNT -NOFPTI

COORW(JOPNT,l) =XCOOR

COORW(JOPNT,2) =YCOOR

10 CONTINUEI
C
C FIND INTENSITY VARIATION WITH BIVARIATE NORMAL DENSITY FUNCTION
C

C MAXOCW = XRANG /XNIND + 1I
C MAXYW = YRANG /YWIND + 1
C

XWIND = XRANG /(MAXOCW - 1.
YID= YRANG /(MAXYW - 1.)I

WRITE(6,950) XWIND, YWIND, DFACT

DO 20 IXWIN = 1, MAXOCWI
DO 20 ZYWIN - 1, MAkXYW

DENTY(IXWIN,IYWIN) = 0.
20 CONTINUE

JITRT = 1
DO 30 IOPNT = 1, NOLPT

XCOOR = COORW(IOPNT,1)I
YCOOR = COORW(IOPNT,2)
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C XI CO WN

IWIN = COOR / WIND + 1

C JOPTN = 3 :SIMULATION WITH L - K FUNCTION
CI IF ( JOPTN.EQ.3 ) THEN

CALL LKERN (JITRT,XCOOR, YCOOR, TRACE,VALUE, COORD, SECON,
* NTOFB)

JITRT = 2

ENYIWN YI)=DT(XNN YN)VALUE * 0.35 /FLOAT(NOLPT) + 0.65 / (22.-14.)

ELSE
C

C JOPTN = 4 :SIMULATION WITH N. N. FUNCTION
C

CALL NEARF (JITRT, XCOOR, YCOOR, FDIST, COORD, TRACE, SECON)

JITRT = 2
DENTY(IXWIN,IYWIN) = DENTY(IXWIN,IYWIN) +

* EXP( -0.5 - (FDIST/SIGMA)**2 )/ ( SIG4A-SQRT(TWOPI)

I * * FLOAT(NOLPT) )*0.35 + 0.65 /(22.*14.)

C
IF ( IOPNT.EQ.1 ) DENMX =DENTY(IXWIN,IYWIN)I IF ( DENTY(IXWIN,IYWIN) .GT.DEUMV ) DENMX =DENTY(IXWIN,IYWIN)

30 CONTINUE
C

DENMX = DP.NMC * DFACTI KOPTN = 1
C
C SIMUIATION STEP

NPSIM = NOSIM - 1
IF ( NPSIM.EQ.0 )RETURN

CI DO 50 IOSIM = 1, NPSIM
IF ( IOSIM.LE.5 )WRITE(6,910) IOSIM

C
C SIMULATION BY NORMAL DISTRIBUTION FUNCTIONIc

C CN
ICONT = 0

I C220 CONTINUE
KCONT = KCONT + 1

C

C GENERATE RANDOM POINT WHICH REPRESENTS THE MID POINT OF THE
C LATTER SET.
CI NOSUS = 2

CALL RANDF ( NOSUS,RSCLE,KOPTN
KOPTN = 2

C CO SLEl RNI XCOOR -RSCLE(2) * XRANG
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IXWIN = XCOOR /XWIND
IYWIN = YCOOR /YWIND
IXWIN = IXWIN + 1

II = IYWIN + 1I
VALUE = DENTY (IXWIN, ZYWIN)

CALL RANDN' ( 1,RSCLE,KOPTN)

IF (KCONT.GT.10000 ) RETURN
IF (RSCLE(1).GT. (VALUE/DENMX) )GO To 220
ICONT = ICONT + 1 COORLICON~l) =XCOI
COORL (ICONT, 1) = YCOOR
COR IOT,2 CO

CIF (IOSIM.LE.5) WRITE(6,920) ICONT, COORL(ICONT,1), COORL(ICONT,2)

IF ( ICONT.LT.NOLPT ) GO TO 220
WRITE(6,930) KCONT

C CALCULATE APPROPRIATE SECOND MOMENTI

C LOPTN = 1 BIVARIATE SECOND MOMENT OPTION
C 2 UNIVARIATE SECOND MOMENT OPTION

IF ( LOPTN.EQ.2 ) THEN
C
C CALCULATE THE SECOND MOMENT

CI
CALL SMSTT ( IOSIM, COORL, SVALU

ELSE

C CALCULATE THE BIVARIATE SECOND MOMENT

C
DO 230 KOPNT = 1, NOYPT
XCOOR = CPFST(KOPNT,l)I
YCOOR = CPFST(KOPHT,2)

CALL BVSMM ( XCOOR, YCO1)R, COORL, SVALU', 1031)1
230 CONTINUE

ENDIF
C

50 CONTINUE
CI
C CALCULATE THE SECOND MOMENT FOR REAL DATA SET 2
C

ZOSIM = NOSIM

IF ( LOPTN.EQ.2 )THEN
CALL SMSTT (IOSIM, COORN, SVALU

ELSE

C CALCULATE THE BIVARIATE SECOND MOMENT FOR REAL DATA SET 2I

Do 240 KOPNT = 1, NOFPT
xcooR -cprST(KOPNT,l)
YCOOR - CPFST(KOPAT,2)

CALL BVSMM ( XCOOR, YCOOR, COORK, SVALU, IOSTMI

END IF
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C
C CALCULATE THE CUMULATIVE K FUNCTION
C

DO 260 IOSIM = 1, NOSIM
DO 250 ISTEP = 1, NSTEP
ADDTV = 0.
IF ( ISTEP.EQ.1 ) GO TO 250
KSTEP = ISTEP - 1
ADDTV = SVALU(IOSIM,KSTEP)
SVALU(IOSIM,ISTEP) =SVALU(IOSIM,ISTEP) + ADDTV

250 CONTINUE
260 CONTINUE

C
CALL KSTAT ( SVALU

C
C MONTE - CARLO STATISTICS
C

WRITE (6, 8 90)
DO 90 IOSXM = 1, NOSIM
CSTAT = 0.
RSTAT = 0.
DO 80 ISTEP = 1, NSTEP
JSTA7- = 0
XSTAT = 0.

ZSTAT = SVALU(IOSIM,ISTEP)
DO 70 JOSIM = 1, NOSIM
IF ( JOSIM.EQ.IOSIM ) GO TO 70
XSTAT = XSTAT + SVALU(JOSIM,ISTEP)

70 CONTINUE
XSTAT = XSTAT /(NOSIM - 1
CSTAT = ( ZSTAT -XSTAT )**2
RSTAT = RSTAT + CSTAT

80 CONTINUE
IF ( IOSIM.EQ.2. ) THEN

RMINV = RSTAT
RMAXV = RSTAT

ENDIF
IF (IOSIM.NE.NOSIM.AND.RSTAT.LE.RMINV )RMINV = RSTAT
IF (IOSIM.NE.NOSIM.AND.RSTAT.GE.RMAXV )RMAXV = RSTAT
WRITE(6,980) IOSIM, RSTAT

90 CONTINUE
WRITE (6, 990) RMINV, RMAXV, RSTAT

C
890 FORMAT(//,5X,PMONTE - CARLO TEST',//)
910 FORMAT(//,5X,'SIMULATIONS OF THE SET 2 WITH LINE - KERNEL FT.',

*/,5X,' ITERATION STEP ',5
*//,9X, 'X - COORD. Y - COORD',//)

920 FORMAT( 5X,I5,3x,2(Fl5.7,3X)
930 FORMAT(/ ,5X,'NO. or ITERATIONS =,5,/
950 FORMAT(//,5X,'X-DIR. WINDOW WIDTH = ',r1O.5,

* /,5X,'Y-DIR. WINDOW WIDTH = ',F1O.5,
*/,5X,'DZNSITY FACTOR - ',F1O.5,

980 FORMAT( 5X,'STATISTIC',15,' - ,F15.3
990 FoRmAT(//,5x,'mIN. VALUE oF STATISTIC - ',F15.3,
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* /,5X,'MAX. VALUE OF STATISTIC = 1,F15.3,
*/,5X,'MAPPED VALUE = ',F15.3

RETURNI
END

CC

SUBROUTINE SMSTT ( IOSIM, COOP.L, SVALU
C
C SUBROUTINE SMSTT EVALUATE SECOND-MOMENT STATISTIC OF3
C MAPPED DATA
C
C XbWLICIT DOUBLE PRECISION (A-H, O-Z)3

CObMN/CONFL/NOPNT, NorPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* NTOTL,NDOF2,NSTEP,DSTEP,NDOFN,SIGMA,TSTEP,MAXXW,
* MAXYW, IOPTN, JOPTN, LOPTN, DYACT

DIMENSION COORL(NOLPT,2), SVALU(NOSIM,NSTEP)I
C

NPSIM = NOSIM - 1
CNSTV = 1.

DO 30 ISTEP = 1,NSTEP
SVALU(IOSIM,ISTEP) = 0.

C
C CALCULATE WEIGHTING COEFFICIENT w(X,u)

DO 20 IPOIN = 1, NOLPTI

XCOOR = COORL(IPOIN,l)
YCOOR = COORL(IPOIN2)
DIST1 = AMINI ( COOR, (XRANG - XCOOR) )I
DIST2 = AMIN1 ( COOR, (XRANG - XCOOR))
SQDIS = DIST1**2 + DIST2**2
DO 10 JPOIN = 1,NOLPT

IF ( JPOIN.EQ.IPOIN ) GO TO 10
XCOR1 = COORL(JPOIN,l)
YCOR1 = COORL(31'OIN,2)
DISTO = SQRT ((XCOOR-XCOR1) **2+ (YCOOR-YCOR1) **2)

WEIGT = 0.
ISTUP = DISTO / DSTEP + 1

IF (ISTEP.GT.NSTEP ) GO TO 10
IFT DISTO**2.LE.SQDIS ) THEN

WEIGT = 1.

ELSE IIT CS NT IT IT
DIST3 = ACOS( CNSTV * DIST2 DISTO)

ED WEGT = 0.75 - ( DIST3 + DIST4 ) / 6.28318

WEIGT = XRANG * YRANG /(WEIGT * (NOLPT)**2
C

C CALCULATE K FUNCTIONI
C

SVALU(IOSIM,ISTEP) = SVALU(IOSIM,ISTEP) + WEIGT
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C 0CNIU
10 CONTINUE

RETURN
ENDI cc

C
SUBROUTINE KSTAT ( SVALU

CIC SUBROUTINE KSTST INTERPRET THE K FUNCTION
C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)

COMM4ON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, XRANG, XBOT, YBOT, NOSIM,
* ~NTOTL, NDOF2, NSTEP,DSTEP ,NDOFN, SI~4A, TSTEP ,MAXOCW,
* MkAW, 10PN, JOPTN, LOPTN, DFACTI DIMENSION SVALU (NOSIM, NSTEP)

C
C FIND MIN. & MAX. VALUE OF SIMULATED DATA

AREAT = XRANG *YRANG
XLAMb3 = NOLPT /AREAT
XLAM2 = XLAMB**2

WRITE t6, 910)
C

NPSIM = NsOSIM - I.IPHIVU = 3.141592
C

DO 20 ISTEP = 1,NSTEPISTOTL = 0.
SMINV = SVALU(1,ISTEP)
S!AAXV = SVALU(1,ISTEP)
STOTL = SVALU(1,ISTEP)IDO 10 IOSIM = 2,NPSIM
IF ( SVALU(IOSIM,ISTEP) .LT.SMINV )SMINV = SVALU(IOSIM,ISTEP)
IF ( SVALU(IOSIM,ISTEP) .GT.SMAXV )SMAXV = SVALU(IOSIM,ISTEP)
STOTL = STOTL + SVALU(IOSIM,ISTEP)

10 CONTINUE
SAVRG = STOTL / NPSIM

C

C MAPPED PATTERN

C

SMAPP = SVALU(NOSIM,rSTEP)
C
C STABILIZE THE K VALUE

DSTNS = DSTEP * ISTEP
DSTS2 = DSTNS **2
5141KV = SMINV - PHIVU*DSTS2ISMAXV = SMAXKV - PHIVU*DSTS2
SAVRG = SAVRG - PHIVU*DSTS2



SMAPP = SMAPP - PHIVU*DSTS2-25

WRITE (6, 920)DSTNS, SMINV,-M'AXV, SAVRG, SMAP

20 CONTINUE
C

910 FORMAT(//,7X,'INHO4OGENEOUS POISSON POINT PROCESS', I
/,7X,'SECOND-MOMEZNT MEASUREMENT STATISTIC',//,I

*3X, 'DISTANCE MIN. VALUE MAX. VALUE',
* ~2X,'AVERAGE MAPPED ' I

C920 FORMAT( 4X,F9.3,3X,4(Fl2.4,2X))

RETURN
END

CCI
SUBROUTINE LKERN ( JITRT, XCOOR, YCOOR, TEACE,VAL'UE, COOED,
C * SECON,NTOFB)

C SUBROUTINE LKERN CALCULATE THE LINE KERNEL FUNCTION
C oF THE FIBER PROCESS.
C AS AN ASSUMPTION, WE ONLY CONSIDER THE LINE LENGTH.
C
C IMPLICIT DOUBLE PRECISION ( A-H, O-Z)
C

COMMON/CONFL/NOPNT, NOYPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,I
* NTOTL,NDOF2,NSTEP,DSTEP,NDOFN, SIG4A,TSTEP,MAXOXw,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION COORD (NOPNT, 4), TRJLCE (NOFIT), SECON (HOPNT)

PITNO = 6.283185
VALUE = 0.

IF ( JITRT.EQ.1 ) THEY
C
C READ END COORDINATES OF THE FORMER SET.

C COORD(IOPNT,l) & COORD(IOPNT,2) :STARTING POINTI
C COOED (IOPNT, 3) & COOED (IOPNT, 4) :END POINT
C

DO 10 IOPNT = 1, NOrPT

IF ( COORD(IOPNT,1).GT.COORD(IOPNT,3) ) THEN
CORXP = COORD (IOPNT, 3)
CORYP = COOED (IOPNT, 4)
COORD(IOPNT,3) = COOED (IOPNT, 1)I
COOED (IOPNT, 4) = COOED (ZOPUT, 2)

COOED (IOPNT, 1) = COEX?

EmirCOOED (IOPNT, 2) - CORYP

C
C CALCULATE THE LINK EQUATION FOR THE GIVEN FIBER

Cy =secod * (zx- Xi ) + YiI
C trace = trace length

C
SZCOD = (COORD(IOPNT,4) - COOED(IOPNT,2) )/
* ( COORD(IOPNT,3) - COOED(IOPNT,1) )1
SECON (IOPNT) = SECOD
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TRACE(IOPNT) = SQRT( (COORD(IOPNT,3) - COORD(IOPNT,1))**2 +
* (COORD(IOPNT,4) - COORD(IOPNT,2))**2

10 CONTINUEINI
C
C LOOKING FOR A DISTANCE BETWEEN FIBER AND DATA POINT

FTLEN =TAEIPT

IF(NITER.EQ.0 ) NITER =1
C* OF = NTOFB + NITER

VALUI = 0.
DO 30 lITER = 1, NITER
TLITN = TSTEP * ( lITER -1 ) + TSTEP / 2.
XTRPT = COORD (IOPNT, 1) + TLITN *( COORD (IOPNT, 3) -

* COORD(IOPNT,l / TRACE(IOPNT)
YTRPT = COORD (IOPNT, 2) + TLITN * ( COORD (IOPNT, 4) -

COORD(IOPNT,2) )/TRACE(IOPNT)
IF ( NITER.EQ.1 ) THEN
XTRPT = ( COORD(IOPNT,3) + COORD(IOPNT,l) )/2.
YTRPT = ( COORD(IOPNT,4) + COORD(IOPNT,2) )/2.I END IF

C
DTRPT = SORT ( (XCOOR-XTRPT) **2 + (YCOOR-YTRPT) **2

VALUl = VALU1 + EXP( -0.5 * (DTRPT/SXGMA)**2)/
* (SIGMA **2 * PITWO)

30 CONTINUEI C CALCULATE THE TOTAL INFLUENCE OF THE FIBER PROCESS
C

VALUE = VALUE + VALU1U20 CONTINUE
C

RETURN

cc END

C
SUBROUTINE RANDF ( NOSUS, RSCLE, XOPTN)

C SUBROUTINE RANDF GENERATE PSEUDO-RANDOM NUMBER
C USING IMSL LIBRARY

DIMENSION RSCLE (NOSUS)
C

IF ( KOPTN.EQ.1 ) DSEED = SECNDS(0O) *100.0

C CALL GGUBS ( DSEED, NOSUS, RSCLE

RETURN

cc END

CC
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SUBROUTINE LENGT ( KOPTN, COOR?
C

ED

CC
C SUBROUTINE INDEP (COORD, CORFB, CORLr, SVALU, CPST, CPSND)

C SUROUTINE INDEP EVALUATE THE INDEPENDENCE TEST
C FOR BIVARIATE POINT PROCESS
C USING EITHER SMALL PERTURBAION METHOD OR TOROIDAL SHIFT SCHEMEI
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMM4ON/CONFrL/NOPNT, NOYPT, NOLPT, XRANG, TRANG, XBOT, YBOT, NOSIM,I
* NTOTL,NDO2,NSTEP,DSTEP,NDOFN,SIGMA,TSTP,MJocXq,
* MAXYW, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION COORD (NOPNT, 4), CORFE (NOFPT, 4), CORLF (NOLPT, 4),
* SVALU (NOSIM, NSTEP)I

DIMENSION RSCLE (2)
DIMENSION CPFST(177,2), CPSND(138,2)

C INITIATE WITH THE ORIGINAL MID POINT DATA OF FORMER
C LATTER SETS

NPLU1 = NOFPT + 1

NPLU2 = NOFPT +- NOLPT
C

DO 10 IOPNT =1, NOINT

READ (5,*) (COORD(IOPNT,IDOFN), IDOFN=1,NDOF2)
XCOOR = (COORD(IOPNT,l) + COORD(IOPNT,3) )/2.
YCOOR = (COORD(IOPNT,2) + COORD(ZOPNT,4) )/2.
CPFST(IOPNT,l) = XCOORI
CPFST(IOPNT,2) = YCOOR

10 CONTINUE

C CALCULATE 2nd MOMENT OF BIVARIATE POINT PROCESSI

C
C SELECT ANALYSIS OPTION

C IsEFT = 1 :SMALL PERTURBATOIN TESTI
C IsHFT = 2 :TOROIDAL SHIFT TEST
C

C READ (5,*) ISEFT

NPSIM = NOSIM - 1
DO 20 IOSIM = 1, NPSIM

DO 25 LSTEP - 1, NSTEP
SVALU(IOSIM,LSTEP) - 0.

25 CONTINUE
CI

IF ( ISHFT.EQ.1 ) THEN

C
C DEFINE PERTURBATION DISTANCE AND USE RANDOM DISTANCE

C

IF ( XOSIM.EQ.1 )DSEED - 123457.0
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CALL GGUSS ( DSEED, 2, RSCLE )
XCOTR = RSCLE(1) * TSTEP * 2. - TSTEP /2.
YCOTR = RSCLE(2) * TSTEP * 2. - TSTEP /2.
DO 30 IPLUS = NPLU1, NPLU2
JPLUS = IPLUS - NOFPT

CPSND(JPLUS,l) = CPrST(IPLUS,l) + XCOTR
CPSND(JPLUS,2) = CPrST(IPLUS,2) + YCOTR

30 CONTINUE
ELSE

IT (IOSIM.EQ.1) DSEED = 123457.0I CALL GGUBS( DSEED, 2, RSCLZ
XCOTR = F.SCLE(l) * XRANG
YCOTR = RSCLE(2) * YRANG
DO 40 IPLUS = NPLU1, NPLU2I JPLUS = IPLUS -NOFPT

CPSND(JPLUS,l) =CPFST(IPLUS,l) + XCOTR
CPSND(JPLUS,2) =CPFST(IPLUS,2) + YCOTR
IT (CPSND(JPLUS,1) .LT.XBOT ) CPSND(JPLUS,1)=-CPSND(JPLUS,1)+XRANG
IF (CPSND(JPLUS,1) :GT:XRANG) CPSND(JPLUS,1)=-CP:ND(JPLUS,1)-XRANG

IF(CPSND(JPLUS, 2) .GT.YRANG) CPSND (3PLUS, 2)=CPSND(JPLUS,2) -TRANGIFIPN(PU,)G.RN)CSN(PU,)CSDJLS2-RN
40 CONTINUE

GO TO 55
END IFI C

C ADJUST THE TRANSFORMED COORDINATE
C

DO 50 IOPNT = 1, NOLPTI IF (CPSND(IOPNT,1) .LT.XBOT ) CPSND(IOPNT,1)=XBOT
IF (CPSND(IOPNT,1) .GT.XRANG) CPSND(IOPNT,1)=XRANG
IF (CPSND(IOPNT,2).LT.YBOT ) CPSND(IOPNT,2)=YBOT
IF (CPSND(IOPNT,2) .GT.YRANG) CPSND(IOPNT,2)=YRANG

C
C CALCULATE THE 2nd MOMENTIc

55 CONTINUE
DO 60 IOPNT = 1, NOrPT
XCOOR = CPFST(IOPNT,l)I YCOOR = CPFST(IOPNT,2)
CALL BVSII ( XCOOR, YCOOR, CPSND, SVALU, iosiM

60 CONTINUEI20 CONTINUE
C MAPPED PATTERN CASE

I IOSIN = NOSIM
DO 80 JOPNT = NPLU1,NPLU2
KOPNT = JOPNT -NOrPTI CPSND(KOPNT,l) =CPFST(JOPNT,1)
CPSND(KOPNT,2) =CPFST(JOPNT,2)

80 CONTINUE
CI DO 75 LSTEP = 1, NSTEP

SVALU(NOSIM,LSTEP) -0.
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75 CONTINUE
DO 70 IOPNT = 1, NOFPT

XCOOR = CPFST(IOPNT,1)I
YCOOR = CPFST(IOPNT,2)
CALL BVSMO4 ( XCOOR, YCOOR, CPSND, SVALU, ZOSIM)

C70 CONTINUE

C CUMULATIVE K FUNCTION
C

DO 300 IOSIM = 1, NOSIMI
DO 200 ISTEP = 1, NSTEP
ADDTV = 0.
IF ( ISTEP.EQ.1 ) GO TO 200
KSTEP = ISTEP - 1I
ADDTV = SVALU(IOSIM,KSTZP)
SVALU(IOSIM,ISTEP) =SVALU(IOSIM,ISTEP) + ADDTV

200 CONTINUE

300 CONTINUE
C

CALL KSTAT ( SVALU)

C MONTE - CARLO STATISTICS
C

WRITE (6, 900)
DO 110 IOSIM = 1, NOSIMU
CSTAT = 0.
RSTAT = 0.

DO 100 ISTEP = 1, NSTEPI
JSTAT = 0
XSTAT = 0.
ZSTAT = SVALU(IOSTM,ISTEP)
DO 90 JOSIM = 1, NOSIMI
IF ( JOSIM.EQ.IOSIM ) GO TO 90
XSTAT = XSTAT + SVALU(JOSIM,ISTEP)

90 CONTINUE

XSTAT = XSTAT I(NOSIM -1)

CSTAT = ( ZSTAT -XSTAT )**2

RSTAT = RSTAT + CSTAT
100 CONTINUEI

IF ( IOSIM.EQ.1 ) THEN
R34XNV = RSTAT

EDFRMAXV = RSTAT

EIF SI.ENSMA .RTTL.MN IK= SA

IF (IOSIM.NE.NOSIM.AND.RSTAT.LE.RMINV )RMINV = RSTAT
WI (690 IOI.N.OSIM.A, RTTG.MX MX RSTAT

110 CONTINUEI

WRITE(6,920) RMINV, RMAXV, RSTAT

900 FORMAT(//,5X,'MONTE - CARLO TEST',//)
910 FORMAT( SX,'STATISTIC',15,' - ',F15.3)

920 FORMAT(//,5X,'MIN. VALUE OF STATISTIC - ',F15.3,

* /,5X,'MAPPDVLE'F1. ,X'J. VALUE OF STATISTIC - ',F15.3,I

C
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END

CC

SUBROUTINE BVSMM ( XCOOR, YCOOR, CPSND, SVALU, IOSIM)
C
C SUBROUTINE BVSMM EVALUATE THE SECOND MOMENT MEZASURE FOR

C BIVARIATE POINT PROCESS
C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)

COISGN/CONFL/NOPNT, NOFPT, NOLPT, XRANG,YRMNG, XUOT, YBOT, NOSIH,

DIESO CPSND(138,2), SVALU(NOSIM,NSTEP)

CNSTV = 1.
C

C CALCULATE THE WEIGHTING COEFFICIENT W(X,U)

DIC M~ COR XAG-XOR
DIST1 = AMIN1 ( YCOOR, (YRANG - XCOOR)ISQDIS = DIST1**2 + DIST2**2
DO 20 IPOIN = 1, NOLPT
XCOR1 = CPSND(IPOIN,1)IYCOR1 = !PSND(IPOXN,2)
DISTO = SQRT ((XCOOR-XCOR1) **24.(YCOOR-YCOR1) **2

C
C NUMERICAL ERROR TEP1MI C

NEIGT = 0.
IF ( DISTO.LE.O.1 ) THEN

WEIGT = 1.
GO TO 15

ENDiF
C

ISTEP = DISTO / DSTEP + 1
IFT ISTEP.GT.NSTEP ) GO TO 20
IF (DISTO**2.LE.SQDIS ) THEN

DIST3 = ACOS( CNSTV a AMXN1(DIST1,DXST0) /DISTO
DIST4 = ACOS( CNSTV * AMIN1(DIST2,DISTO) /DISTO)
WEIGT = 1. -(DIST3 + DIST4 )/3.14159

ELSE
DIST3 = ACOS( CNSTV * DISTI/ DISTO )

C 5END IF

20 CONTINUE

I C

RETURN
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END
cc

C SUBROUTINE NNMLE ( COOED, TRACE, SECON, XLAMO )

C
C SUBROUTINE NNLE EVALUATES THE HIERARCHICAL FIBER MODEL

C WITH NEAREST NEIGHBOR FIBERS.I
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

C coIO4N/CONFL/NOPNT, NOFPT, NOLPT, XRAMG, YRANG, XBOT, YBOT, NOSIM,I

* NTOTL,NDoF2,NSTZP,DSTEP,NDON,SIG4A,TSTEP,MAXOCW,
MAXYW, IOPTN, JOPTN,LOTNDFACT

DIMESIONCOOED (NOPNT, 4), TRACE(NoFPT), SECON (NOPNT)

DIMENSION COORW(138, 2)
C

TWOPI = 6.28318
JITRT = 1I
VALTC = 0.
NPLU1 = NOFPT + 1

NPLU2 = NOFPT + NOLPTI
WRITE (6, 910)

C
C CALCULATE THE MLE OF THE NEAREST NEIGHBOR FIBER FUNCTION

CI
DO 10 IOPNT = NPLU1,NPLU2

C
C READ MID POINT Or THE LATTER SET ( MAPPED DATA)

C
READ (5,*) ( COORD(IOPNT,IDOFN), iDOFN=1,NDoF2)

XCOOR = ( COORD(IOPNT,1) + COORD(IOPNT,3) ) /2.
YCOOR = ( COORD(IOPNT,2) + COORD(IOPNT,4) ) /2.I
JOPNT = IOPNT -NOFPT

COORW(JOPNT,l) =XCOOR

COORW(JOPNT,2) =YCOOR

10 CONTINUE
C

JITRT = 1

CI
C EVALUATE LOG SUM OF bME
C

SIG4O = SIGMA
Do 40 JSTEP = 1, NSTEPI
XLAi4O = XLAMO + DSTEP

DO 30 ISTEP = 1, NSTEP

VALUE = 0.I
IF ( ISTEP.EQ.1 ) SIGMA =SIN

SIGMA = SIGMA + DSTEP

C
DO 20 IOPNT = 1, NOLPTI

C
C FIND THE SHORTEST DISTANCE BETWEEN A POINT AND A FIBER

C CO =IOR(IPTl
XCOOR = COORW(IOPNT,2)
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CALL NEARI ( JITRT, XCOOR, YCOOR, FDIST, COOED, TRACE, SECON
JITRT = 2

C EVALUATE MLE FOR NEAREST NEIGHBOR DISTANCE USING
C MIXED DISTRIBUTION
CI VALUE = VALUE + ALOG( XLAMO / (22.*14.) +

* (l.-XLAMO) * EXP( -0.5 * (FDIST/SIGMA)**2)/
* ( SIGMA * SQRT(TWOPI) * FLOAT(NOLPT)))

20 CONTINUEI WRITE (6, 920) SIGMA, XLAMO, VALUE
IF ( ISTEP.EQ.1.AND.JSTEP.EQ.1 )THEN

VALbMX = VALUE
SIGNX = SIGMA

ENDIF

SIGMX = SIGMA

9::X XVLE.TAMX)TE

40 CONTINUE
WRITE (6, 930)I WRITE(6,920) SIGMX, XLANX, VALICC

90FORMAT(//,5X,'MLE OF NEAREST NEIGHBOR FIBER FUNCTION,//)
920 FORMAT( /,2X,'SIGMA , XLAM0 AND LOG SUM OF ML VALUE=

* 2Fl0.5,5X,Fl5.7)
930 FORMAT(//,5X,'MAX. VALUES',//)

END

SUBROUTINE KFMLE ( COOED, CORFB, SECON, TRACE, CORLF, COORL, SVALU,
* ~eLJJM)

C
C SUBROUTINE KFMLE EVALUATES THE HIERARCHICAL FIBER MODEL

C WITH LINE - KERNEL FUNCTION.
C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMIION/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
NTOTL,NDOF2,NSTEP,DSTEP,NDOFN, SIGMA,TSTEP,MAXXW,

* MAXYN, IOPTN, JOPTN, LOPTN, DFACT
*DIMENSION COOED (NOPNT, 4), CORFB (NOFPT, 4), SECON (NOPNT),

CORLF (NOLPT, 4), COORL (NOLPT, 2), TRACE (NOFPT)

DIMENSION SVALU(NOSIM,NSTEP), RSCLE(2)
DIMENSION COORW(138,2)I C CALCULATE THE SHAPE OF THE LINE - KERNEL FUNCTION WITH

C MAPPED DATA.

TWOPI = 6.28318

JITRT = 1



VALTC = 0. -23
NPLU1 = NoFPT + 1
NPLU2 = NOFPT + NOLPT

C WRITE (6, 910)I

CA C LTCH L F T E L N E N L F N T O

C

DO 10 IOPNT = NPLU1,NPLU2

C READ MID POINT oF THE LATTER SET ( MAPPED DATA)I
C

READ 5*)(COORD(IoPNT,IDoFN), iDOFN=1,NDOF2)
XCOOR =(COORD(IOPNT,1) + COORD(IOPNT,3) ) /2.
YCOOR =(COORD(IOPNT,2) + COORD(IOPNT,4) ) /2.I
JOPNT =IOPNT -NoFPT

COORW(JOPNT,l) =XCOOR

COORW(JOPNT,2) =YCOORI
10 CONTINUE

C
C CALCULATE THE sum oF ML

SIGMO = SIGMA
DO 40 JSTEP = 1, NSTEP
XLAMO =XLAMlO + DSTEP

DO 20 ISTEP = 1, NSTEP
VALTC = 0.
VALUE = 0.

IF ( ISTEP.EQ.1 ) SIGMA =SIGM()
SIGMA = SIGM4A + DSTEP
DO 30 IOPNT = 1, NOLPT
XCOOR = COORW(IOPNT,l)
YCOOR = COORW(IOPNT,2)I
CALL LKERN ( JITRT, XCOOR, YCOOR, TRACE, VALU1, COORD, SECON,

JTT= 2 NTOFB )I

VALUE - VALUE + ALOG( XLAMO /(22. * 14. ) +

30 ONTNUE(1.-XLAMO) * VALU1 FLOAT(NOLPT) )
HRITE(6,920) SIGMA, XLAMO, VALUE
IF ( ISTEP.EQ.1.AND.JSTEP.EQ.1 )THEN

VALIMC = VALUE

SIQCC = SIGMAU

ENDIF
IF ( VALUE.GT.VAIMX )THEN

VALMX = VALUEI

XLAMX = XLAHO

ENDIF

40 CONTINUE

WRITE (6, 930)I

WRITE(6,920) SIGMXC, XLAbC, VAUMX
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C
910 FORMAT(//,5X,'MLE OF LINE - KERNEL FUNCTION',

920 FORMAT( /,2X,'SIGbiA AND XLAHO & LOG SUM OF ML VALUE '
* 2FI0.5,5X,F15.7)

I 930 FORMAT(//,'MAX. VALUES',//)

RETURN
END

CC

SUBROUTINE KERNL ( NOLPT, XCOR2, YOCR2, VLUXL, COORN, SIGM4A
CIC SUBROUTINE KERNL EVALUATE THE BIVARIATE KERNEL FUNCTION WHEN
C GENERATING THE 2nd SET.
C

DIMENSION COORW(138, 2)

TWOPI = 6.28318
VLUKL = 0.

DO 10 IOPNT = 1, NOLPT
XCORD =COORW(IOPNT,l)
YCORD = COORW(IOPNT,2)
DISTS = ( XCOR2-XCORD )**2 + ( YCOR2-YCORD )**2
VLUKL = VLUKL + EXP( -0.5 *DISTS / SIGMA**2

10 CONTINUEI VLUKL = VLUKL / FLOAT (NOLPT)

RETURN
END

ccI C
SUBROUTINE NEARF ( JITRT, XCOOR, YCOOR, FDIST, COORD, TRACE,I C *SECON)

C SUBROUTINE NEARF CALCULATES THE NEAREST NEIGHBOR FIBER
C DISTANCE FROM A GIVEN POINT IN A MAPI C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)

COMM4ON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* ~NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SIGMA, TSTEP , MAXaW,

MAXYW, IOPTN, JOPTN, LOPTN, DFACT
DIMENSION COORD (NOPNT, 4), TRACE (NOFPT), SECON (NOPNT)

C
rDIST = 0.

IF ( JITRT.EQ.1 ) THEN
DO 10 IOPNT = 1, NOFPT
IF ( COORD(IOPNT,1) .GT.COORD(IOPNT,3) )THEN

CORXP = COORD (IOPNT, 3)

CORYP - COOED (IOPNT, 4)
COOED (IOPNT, 3) - COOED (IOPNT, 1)

COORD(IOPNT,4) = COOED (IOPNT, 2)

COOED (IOPNT, 1) - CORXP
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COORD(IOPNT,2) = CORYP
ENDIF

CI
C CALCULATE THE LINE EQUATION FOR THE GIVEN FIBER
C
C y =secod* (x -xi) + yi

C trace =trace lengthI
C

SECOD =(COORD(IOPNT,4) - COORD(IOPNT,2))/
(COORD(IOPNT,3) - COORD(IOPNT,1)I

SECON(IOPNT) = SECOD
TRACW.(IOPNT) = SQRT( (COORD(IOPNT,3) - COORD(IOPNT,1))**2 +

10* CONTINU (COORD(IOPNT,4) - COORD(IOPNT,2))**2)

ENDIF

C LOOKING FOR A NEAREST NEIGHBOR FIBER FROM A GIVEN POINT

C
DO 20 IOPNT = 1, NoFPT
IF ( SECON(IOPNT).LT.0.001 ) SECON(IOPNT) = 0.001

SECOD = SECON(IOPNT)
XCROS = ( SECOD*COORD(IOPNT,l) + XCOOR/SECOD + YCOOR

*-COORD(IOPNT,2) ) / ( SECOD + I./SECOD
IF ( XCROS.LE.COORD(IOPNT,l) ) XCROS = COORD(IOPNT,l)
IF ( XCROS.GE.COORD(IOPNT,3) ) XCROS = COORD(IOPNT,3)I
YCROS = ( XCROS-COORD(IOPNT,l) ) * SECOD + COORD(IOPNT,2)
FDIS1 = SQRT( (XCOOR-XCROS)**2 + (YCOOR-YCROS)**2)3

C FIND THE SHORTEST DISTANCE
C

IF (IOPNT.EQ.1 ) FDIST = FDIS2.
IFT FDIS1.LT.FDIST ) FDIST = FDISl

20 CONTINUE
C

RETURN

END
cc

C

C SUBROUTINE ORINT MEASURE THE ORIENTATION
C CORRELATIONS BETWEEN SET 1 AND 2.

C
C IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COI4ON/CONFL/NOPNT, NOFPT, NOLPT, XRANG, YRANG, XBOT, YBOT, NOSIM,
* ~~NTOTL, NDOF2, NSTEP, DSTEP, NDOFN, SI~bA,TSTEP ,MAXXfl,I
* MAXYN, IOPTN, JOPTN, LOPTN, DFACT

DIMENSION COORD(NOPNT,4), TRACE(NOFPT), SECON(NOPNT)
DIMNSION C"RORN(40,18), IRINT(20)

TWOPI = 6.28318

C NPLUl = NOFPT + 1

IF ( IOPTN.EQ.4 ) GO TO 110
C
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READ (5,-) ANGLE

NOANG = 180. /ANGLE

C READ COORDIN4ATES OF FIBERS

DO 10 IOPNT =1, NOPNT
READ (5,*) (COORD(IOPNT,JOPNT), JOPNT=1I,NDOFr2

10 CONTINUE
C
C LOOKING FOR A NEAREST NEIGHBOR FIBER
C

JITRT = I
DO 20 IOPNT = NPLU1, NOPNTIXCOOR = (COORD(IOPNT,1) + COORD(IOPNT,3) ) /2.
YCOOR = (COORD(IOPNT,2) + COORD(IOPNT,4) ) /2.
CALL NEARF ( JITRT, XCOOR, YCOOR, FDIST, COORD, TRACE, SECON
jITRT = 2

IDIST = FDIST / DSTEP
IDIST = IDIST + 1I CORDD = COORD (IOPNT, 3) - COORD (IOPNT, 1)
IF (CORDD.LE. 0.0l.AND.CORDD.GE.0. )CORDD = 0.01
IF (CORDD.GE.-0.01.AND.CORDD.LE.O. )CORDD =-0.01
STRKE = ( COORD (IOPNT, 4) - COORD (IOPNT, 2) )/CORDD
STRKE = ATAN(STRKE) * 180. / 3.14159
IF ( STRKE.LT.O. ) STRKE = STRKE + 180.

IORNT = STRKE / ANGLEI IORT = ORNTCRORN(IDIST,IORNT) = CRORN(IDIST,IORNT) + 1

20 CONTINUE

I WRITE (6, 910)
DO 30 ISTEP = 1, NSTEP
DISTS = ISTEP * DSTEPIDO 40 JSTEP = 1, NOANG
STRKE = JSTEP * ANGLE
IFREQ = CRORN(ISTEP,JSTEP)
FrREQY = FLOAT( IFREQ ) / FLOAT( NOLPT)I WRITE(6,920) DISTS, STRKE, IFREQ, FREQY

40 CONTINUE
30 CONTINUE

WRITE (6, 930)
DO 50 JSTEP = 1, NOANG
STRKE = JSTEP * ANGLE
DO 60 ISTEP = 1, NSTEP
IRINT(ISTEP) = CRORN(ISTEP,JSTZP)

60 CONTINUE
WRITE(6,940) STRKE, (IRINT(ISTEP) ,ISTEP-1,NSTEP)I50 CONTINUE
RETURN

C
C IOPTN = 4 : HE OF ORIENTATION DISTRIBUTION

C WRAPPED NORMAL DISTRIBUTION IS ADOPTED IN CURRENT VERSION
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C
110 CONTINUE

DO 115 IOPNT = 1, NOrPTI
READ (5, *) DUMM1, DUMMO2, DU34N3, DUMM4

115 CONTINUE

DO 120 IOPNT = 1, NOLPTI
READ (5, *) ( COORD (IOPNT, JOiNT) ,JOPNT=1, NDOF2)
DIFFS = COORD(IOPNT,3) - COORD(IOPNT,l)
IT DIFFS.LE. 0.0l.AND.DIFFS.GE.O. )DIFFS =0.01
IT DIFFS.GE.-0.01.AND.DIFFS.LE.0. )DIFFS =-0.01I
SECOD = ( COORD(IOPNT,4) - COORD(IOPNT,2) )/DIFFS
SECON(IOPNT) = ATAN( SECOD ) * 57.2958

IF ( SECON(IOPNT).LT.O. ) SECON(IOPNT) = SECON(IOPNT) + 180.I

C
C READ OPTION ( MOPTN

c1 Von Mises DISTRIBUTION ON A CIRCLEI
C 2 WRAPPED NORMAL DISTRIBUTION

C
NOLP2 = NOLPT * 2
READ (5, *) MOPTNI
WRITE (6, 990) MOPTN
IF ( blOPTN.EQ.2 ) GO TO 200

C MOPTN= 1
C CALCULATE THE MLE OF GIVEN DATA USING Von Niee DISTRIBUTION

XKVAL = TSTEPI
XANGL = SIGMA
DO 150 JSTEP = 1, NSTEP

XANG1 = XANGL * JSTEPI
XANG2 = XANG1 + 180.
DO 140 ISTEP = 1, NSTEP
XKVAL = TSTEP + ( ISTEP - 1I DSTEP

BESSL = 1. + (0.5*XKVAL)**2 + (0.5*XKVAL)**4 /4. +
*(0.5*XKVAL)**6 /36. + (0.5*XKVAL)**S (24.)**2 +

DE~ =1 /(TOP BSL(0.5*XKVAL)**10 /(120.)**2I

C
VALUE = 0.
DO 130 IOPNT =1, NOLP2I
IF ( IOPNT.LE.NOLPT ) THEN

ANGLE = SECON(IOPNT)

ELEJONT = IOPNT - NOLPT
ANGLE = SECON(JOPNT) + 180.

ENDIF

VALUE =VALUE + ALOG( 0.5 * BESSi 1 EXP( XKVAL*
* COS( (ANGLE-XANG1)*0.01745 )))+ 0.5 B DSSi
* * (EXP(XKVAL * COS( (ANGLE-XANG2)*0.01745))

130 CONTINUEI
C

MITE (6, 950) XKVAL, XANG1, VALUE
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IF ( ISTEP.EQ.1.AND.JSTEP.EQ.1 )THEN
X1K4AX = XKVALI XAMAX = XANG1
VALM3X = VALUE

ENDiF
IT ( VALUE.GT.VALCC THEN

XAE = OIWAL DSRBTO

10CONTINUE

XANGL = SIGMA
KSTEP = -NSTEP / 2I DO 230 ISTEP = 1, NSTEP
XANG1 = XANGL + ( ISTEP-1) * 5.
XANG2 = XANG1 + 180.

VALUE = 0.
XKVAL = TSTEP + ( JSTEP - 1I DSTEP
DO 210 IOPNT = 1, NOLP2
IT ( IOPNT.LE.NOLPT ) THEN

ELSE=SCO(OPT
ELEJOPNT = IOPNT - NOLPT

ANGLE = SECON(JOPNT) + 180.
* ENDiF
* VALUl = 0.

VALU2 = 0.

DO 240 LSTEP = 1, NSTEP

RSTEP = KSTEP + LSTEP
VALU1 = VALUl + EXP( -0.5 *(((ANGLZ-XANG1-360.*RSTZP)

I *U = VALU2 + EXP( -0.5 * ( ( (ANGLE-XANG2-360.*RSTZP)
* * 0.01745 )**2 / XKvAL**2))

240 CONTINUEI ~ ~~~VALUE = VALUE + (XVSQTTOI)* VAU+LU)
ALOG( 0.5 / (KA*QTTOI) (A~+AU)

C
210 CONTINUE

WRITE(6,950) XKVAL, XANG1, VALUE
IT (7 ISZ.Q1ADJSZ. 1)TE

X~tMX =XKVAL

ENDiF
IF ( VALUE.GT.VALCC ) THEN
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X301AX = XKVAL
XAMAX = XANG1
VALM)C = VALUE

END IF
220 CONTINUE

230 CONTINUEI

300 CONTINUE

WRITE (6, 960)I

WRITE(6,950) XKMAX, XAMAX, VALMX

C CALCULATE FREQUENCIES OF THE WRAPED NORMAL DISTRIBUTION

C WITH CALCUALTED MAX. VALUE OF SIGMA
C

WRITE (6, 970)
VALUE = 0.I

SIGMA = XK4AX

XKVAL = ==MA I
XANG2 = XANG1 + 180.
DO 330 IANGL =1, 36

ANGLE = IANGL * 10.I

VALUE = 0.
VALU2 = 0. VALU2 = 0
IF ( MOPTN.EQ.2 )THEN

DO 320 JSTEP =1, NSTEP
RSTEP = KSTEP + JSTEP

VALU1 = VALU1 + EXP( -0.5 *(((ANGLE-XANG1-360.*RSTEP)I
* * 0.01745 )**2 / SIGMA**2 ) )
VALU2 =VALU2 + EXP( -0.5 * ( ( (ANGLE-XANG2-360.*RSTEP)

320* CONTINUE)*2/S(a2))

VALUE = 0.5 / (SIGMA*SQRT(TWOPI)) * (VALU1+VALU2)

VALMX = VALMX + VALUE
ELSEI

BESSL = 1. + (0.S*XKVAL)**2 + (0.5*XKVAL)**4 4
*(0.5*XKVAL)**6 /36. + (0.5*XKVAL)**S /(24.)**2 +
* (0.5*XKVAL)**10 /(120.)**2
BESS1 = 1. /(TWOPI * DSSL

VALUE = BSS1i* 0.5 * EXP( XKVAL*

* X(XKA CS ANL~AN2*.075COS( (ANGLE-XANG1)*0.01745 ) ) + 0.5*

VALDCC = VALbOC + VALUE
END IF

WRXTZ(6,980) ANGLE, VALUEI
330 CONTINUE

VALMCC = VALICC * 0.17453
WRITE (6, 890) MOPTN,VALMX

890 FORMAT(//,SX,'OPTION = ,5
* /,5X,'INTEGRATION oF FREQUENCY ' ,T15.7)
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910 FORMAT (II,5X, 'ORIENTATION CORRELATION MEASURE',
*/,7X,'DISTANCE ANGLE FREQUENCY',//)

920 FORMAT( 5X,2(F7.3,3X) ,13,3XF9.6)
930 FORMAT(//,5X,'ANGLE DISTANCE (dstep * integer ) ma',//)
940 FORMAT( 3X,F7.3,3X,1015)
950 FORMAT( 5X,'k-value ANGLE ILOG SUM =n ',3F15.6)

960 FORMAT(//,5X,' MAX. VALUES OF WRAPPED NORMAL DISTRIBUTION'//)
970 FORMAT(//,5X,'FREQUENCY EVALUATION WITH GIVEN MAX. VALUES',//)
980 FORMAT( 5X,'ANGLE & FREQUENCY = ',2F15.5)
990 FORMAT(//,5X,'MLZ OPTION M OPTN ',1OX,15,

* /,8X,'1 Von Mises DISTRIBUTION ON A CIRCLE',
/,8X12 WRPPE NOMALDISTRIBUTION 1

END

PROGRAM TDIST

C PROGRAM TDIST ESTIMATE THE TRACE LENGTH DISTRIBUTION
C USING MAXIMUM LIKELIHOOD ESTIMATEI C
C THREE POSSIBLE DISTRIBUTIONS ARE EXAMINED
C 1. EXPONENTIAL DISTRIBUTION
C 2. TRUNCATED NORMAL DISTRIBUTIONIC 3. LOGNORMAL DISTRIBUTION
C
C TRACE (i, 1) TRACE LENGTH DATAIC TRACE(i,2) BOUNDARY oF THE MAPPED AREA
C NCONF(±) CHARACTERISTICS OF THE TRACE
C 1 FOR THE TRACE WIJTH BOTH ENDS OBSERVABLE
C 2 FOR THE TRACE WITH ONE END OBSERVABLEIC 3 FOR THE TRACE WITH NO END OBSERVABLE
C

DIMENSION TRACE(39,2), NCONF(39)

OPEN (5, FILE='tdist.dat5', STATUS='UNKNONN')
OPEN (6, FILE='tdist.out')

CI NOFPT = 39
C

Do 10 ZOYPT = 1,NOFPT
READ (5,*) TRACE(IOFPT,1), TRACE(ioFPT,2), NCONF(IOFPT)I TRACE(IOFPT,l) = 0.833 * TRACE(IOFPT,1)
TRACE(ZOFPT,2) = 0.833 * TRACE(IoFPT,2)

10 CONTINUE1 C
C ITERATE FOR EACH CASE
C

SUMM3 - 0.

READ (5,*) NITER
DO 20 lITER - 1,NITERI C

C READ THE OPTION
C

C NOPTN = 1 :EXPONENTIAL DISTRIBUTION WITH MEAN VALUE
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C 2 TRUNCATED NORMAL DISTRIBUTION WITH TWO VARIABLES
C 3 LOGNORMAL DISTRIBUTION WITH TWO VARIABLES
CI

READl (5, *) NOPTN
GO TO ( 100, 200, 300 ), NOPTN

C EXPONENTIAL DISTIBUTION WITH ASSUMED MEAN VALUE
C

100 CONTINUEI
READ (5,*) RHEAN, STEPS, NSTEP

DO 40 ISTEP = 1,NSTEPPROB3 = 0
PROB3 = 0.
PROD6 = 0.

DMEAN = RMZAN + (ISTEP - 1I STEPS

DO 30 IOYPT = 1, NOFPT
JOPTN = NCONF(IOFPT)

RTRCE = TRACE (IOFPT, 1)
BTRCZ = TRACE (XOYPT, 2)I
CONST = 1. / ( MZAN4 BTRCZ - 3.*XNZ*XP(-TRCE/XbAN)

C CONST =1. / XMEAN +DTRCE -XMAN *EXP( -TRC/XMEAN)
IT ( JOPTN.EQ.1 ) THEN

PROB1 = TRCE 1O4EAN + XNAN * EXP(-DTRCE / XMEAN)
PROB1 = PROB1 CONST
PROB2 = ( DTRCE - RTRCE )*EXP( -RTRCE / HO4AN ) / bO4AN

Emr ROB3 = PROB3 4 ALOG( PROBI * PROB2)I

IF ( JOPTN.EQ.2 ) THEN
PRB ( . XEN 1. - EXP(-DTRCE/XMZAN )

PRO84 = PROB4 CONSTI
PRODS = EXP( -RTRCE / DEAN ) ( EGAN * 1.~

* EXP ( - TRCE /XMEAN)))

ENDIF PROB6 = PROB6 + ALOG( PROB4 *PROD5)I

IF ( JOPTN.EQ.3 ) THEN
PROD? = XGIEAN * EXP( -BTRCE XMEAN

PROD? = PROD? * CONST
PRODS = 1.
PROD9 = PROB9 +ALOG( PROB7*PROBS)

PROBQ = PROW3 + PROD6
30 CONTINUE

C

C FIND MAXIMUM LIKELIHOOD ESTIMATES

WRITZ(6,910) XOZAN, PROD3, PROD6, PROD9
If ( ISTEP.EQ.2. ) THEN

SUMM4A = PRODQ

SUMM3 = PROW3
SU3046 -PROD6
SUM149 - PROD9
VMEA3 - XMEANI
VMZA6 - XGNEAN
VMEA9 - XMEAN
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ENDIF
IF ( PROB3.GT.SUMM3 )THENI ~sumM3 = PROW3

VMEA3 = XMEAN
ENDIF
IF ( PROB6.GT.SUM6 )THENI SUMM6 = PROB6

VMEA6 = XMr.AN
END IFI IT ( PROB9.GT.SUhO9 )THEN

SUMI49 = PROB9
VMEA9 = XGEEAN

END IF1 IT ( PROBQ.GT.SUMMA) THEN
SUMM4A = PROBQ
VMEAQ = XKEAN

END IF

40 :ONTE RSL IHESEN OML O APIGLN

WRITE(6,920) VMEA3, SU~O43, VMEA6, StJMM6, VMEA9,SUa49,VMEAQ,SUhfA

TLENG = 0.I DO 50 IOFPT = 1,NOFPT
KOPTN = NCONF(iorPT)
TLENG = TLENG + TRACE (IOFPT. 1)

IF ( KOPTN.EQ.1 ) ISUM( = ISU1hdM + 1
50 CONTINUE

VKEAN = TLENG / FLOAT( ISUIO

NRITE(6,930) VMKAN

GO TO 400
CI C TRUNCATED NORMAL DISTRIBUTION WITH ASSUMED MEAN AND STh. DEVIATION
C

200 CONTINUE
READ (5,*) XMZAN, DEVIA, STEP1, STEP2

GO TO 400
C
C LOGNORMAL DISTRIBUTION WITH ASSUMED MEAN STD. DEVIATION

300 CONTINUE
READ (5,*) XMEAN, DEVIA, STEP1, STEP2

I400 CONTINUE
20 CONTINUE

C
900 FORMAT(//,5X,'EXPONENTIAL DISTRIBUTIONS oF TRACES'

*/,8X,'bMAN VALUE',10X,'LOG SUM FOR TYPE 1 2 &
910 FORmAT(7X, F12.5,5X,3(F1O.5,3X) )
920 FORMAT(//,5X,'MAXMUM LIPELIHOOD ESTIMATE FOR EXPONENTIAL CASE',I * //,5X,'FOR TYPE 1I BOTH ENDS VISIBLE)'

*/, 7X,'IMEAN VALUE I ',T20, F10. 4,

* /,7x,'MAX. VALUE -',T20,F1O.4,
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* //,5X,'FOR TYPE 2 (ONE END VISIBLE)'
* /,7X,'MEAN VALUE =',T20,r1O.4,

* /,7X,'MAX. VALUE = ,T20,F1O.4,I
* //,5x,'FOR TYPE 3 (NO END VISIBLE),
* /,7XI.AN VALUE = ,T20,F1O.4,

/,7X,'MAX. VALUE = ,T20,F1O.4,I
*//,5x,'FOR SET 1 (ALL TRACES)',

* /,7X,'MEAN VALUE = ',T20,F10.4,
* /,7X,'bsAX. VALUE = ',T20,r1O.4,//)

930 FoRMAT(//,5x,'mLE FOR MEAN VALUE BY EPSTEIN EQUATION ',Frr5.7)
C

STOP

END

PROGRAM TERMN

CPROGRAM TERMON EVALUATE THE TRACE LENGTH DISTRIBUTIONS3

C ACCORDING TO THE GIVEN SIMULATED TYPICAL POINTS.
C

DIMENSION COORD(138,2), TDIST(138), RSCLE(1, TSEND(138),
* TRCPT(138,4), TrREQ(30), RSCL1(1)I

DIMENSION CORFP(39,4), TRACE(39), SECON(39)
C

NLENG = 30

C FIRST, READ THE BEST FIT oF THE TYPICAL POINTS
C

READ (5, *) NOPNT,NOFPT,NOSM,VEAN,AEAN, SIG4A,TRUNLI
NOLPT = NOPNT - NOFPT

READ (5,*) XBOT, XTOP, YBOT, YTOP
WRITE(6,820) NOPNT,NOFPT,NOLPT,VMAN, AMEAN, SIN

820 FoRmAT(//,5x,'No. oF TOTAL POINTS = I15
*/,5X,'NO. OF POINTS IN SET 1 =',5
*/,5x,'No. oF POINTS IN SET 2 = ,5

/,5X,'bEAN TRACE LENGTH OF SET 2 = ',F15.5,I
* c/2:AN £AAk~ NGTE 01 SET 2 = ',F15.5,

*/,5X,'STANDARD DEVIATION oF ANGLE = ',F15.5,//)

XRANG = XTOP - XBOT
YRANG = YTOP - YBOTI

C
READ (5,*) MOPTN
WRITE (6, 990) MOPTNI

990 FoRMAT(//,5x,'ORINTATION DISTRIBUTION OPTION - ',110,
* /,8X,' ( 1 Von Mines DISTRIBUTION
* I, BX,' ( 2 :WRAPPED NORMAL DISTRIBUTION)'/)

DO 10 IOINT - 1, NOFPT
READ (5,*) ( CORFP(IOPNT,JOPNT), JOPNT=1,4)
CORPS = CORrP(IOPNT,3) - CORrP(IOPNT,l)
IF ( CORRS.LT.0. ) THENCORTX= COrP(IONTI

CORTX - CORrP(IOPNT,2)
CORTYIONTl -CORFP(IOPNT,2)
CORrP(IOPNT,2) - CORrP(IOPN'r,4)

CORFP(IOPNT,2) - CORFPIONT4
CORFP(IOPNT,4) - CORTY

ENDiF
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TRACE(IOPNT) = SQRT( (CO~rP(IOPNT,3)-COR~rP(IOPNT,1))**2 +
* (CORYP (IOPNT, 4) -CORn P(IOPNT, 2)) **2IIF CORRS.LE. 0.0l.AND.CORRS.GE.0. )CORRS = 0.01

IF (CORRS.GE.-0.0l.AKD.CORRS.LT.0. )CORPS -0.01
SECON(IOPNT) =(CORFP(IOPNT,4)-CORFP(IOPNT,2) )/CORB.S

10 CONTINUE

I~EA C 20 IDUMM, COORD (IOPNT, 1), COORD (IOPNT, 2)
D0 ON20IN , OP

C
TKOPI = 6.283185 XANGL = 105.
IF ( MOPTN.EQ.1 ) THEN

XKVAL = 1.9
BESSL = 1. + (0.5*XKVAL)**2 + (0.5*XKVAL)**4 /4. +I* +(0.5*XKVAL)**6 6 0.*KA)*0(4)*

+(0.5*XKVAL)**10 / 36.+ 0.*xKA)**/(4)*

VALMX = BESSi 1 0.5 * EXP(XKVAL) + 0.5 *EXP( -XKVAL))
ELSE

XKVAL = 0.8
VALMl = 0.
VALU2 = 0.
NSTEP = 10

KSTEP - -NSTEP /2
DO 500 JSTEP = 1, NSTEPI RSTEP = KSTEP + JSTEP
VALMl = VALU1 + EXP(-0.5 * ((( -360.*RSTEP)*0.01745 )**2
* / XKVAL**2 ) )

*/XVL*VALU2 = VALU2 + EXP(-0.5 * (((-180.-360.*DSTEP)*0.01745)**2

500 CONTINUE
VALMX w 0.5 *(VALMl + VALU2 )/(XKVAL *SQRT(TWOPI))

C END IF

JOPNT = 0
DSEED = 12345.DOI30 CONTINUE
CALL GGEXON ( DSEED, VMEAN, 1, RSCLE)
IF ( RSCLZ(l) .LT.TRUNL ) GO TO 30

I35 CONTINUE
CALL GGUBS ( DSEED, 1, RSCL1

ORINT= RSL1( * 180.I IF ( )4OPTN.EQ.1 )THEN
VALUE = 33851 *( 0.5 *EX3( XKVAL
* COS( (ORINT-XANGL)*0.01745 ))+

IELS 0. 5*EXP (XKVAL*COS ((ORINT-XANGL-180.) *0.01745)))
EL 0
VALU2 = 0.

DO 510 ISTEP - 1, NSTEP
RSTER = KSTEP + ISTEP
VALMl = VALMl + EXP( -0.5 *((ORINT-XANGL360.*
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* PSTEP) * 0.01745 )**2 / y.VAL**2))
VALU2 = VALU2 + Exp( -0.5 ((( ORINT-XANGL-180.-360.*

* RSTEP) * 0.01745 )**2 /XKVAL**2))I
510 CONTINUE

VALUE = 0.5*(VALU1+VALU2) /(XKVAL * SQRT(TwopI))3

CALL GGUBS ( DSEED, 1, RSCL1)
IF ( RSCL1(1).GT.(VALUZ/VALwc)) GO To 35

JOPNT =JOPNT + 1I
TDISTP(OINT) = RSCLE (1)
TDSTH -TDIST(JOPNT) / 2.
TDST1 = SQRT( 1. + (TAN(ORINT))**2
TRCPT(JOPNT,1) = COORD(JOPHT,1) + TDSTH /TDST2.
TRCPT(JOPNT,2) = COORD(JOPNT,2) + TDSTH *TAN(ORINT) /TDST1
IF ( ThCPT(JOPNT,1).GT.XRANG ) THEN

TRCPT(JOPNT,l) = XTOPI
TRCPT(JOPNT,2) = COORD(JOPNT,2)+

ENDI ( TRCPT(JOPNT,1) - COORD(JOPNT,1) )*TAN(ORINT)
IF ( TRCPT(JOPNT,2).GT.YRANG ) THEN

TRCPT(JOPNT,2) = YTOP
TRCPT(JOPNT,l) = COORD(JOPNT,l) +

END I ( TRCPT(JOPNT,2) - COORD(JOPNT,2) )/TAN(ORINT)I

IF ( TRCPT(JOPNT,1).LT.XBOT ) TREN
TRCPT(JOPNT,l) = XBOTI
TRCPT(JOPNT,2) = COORD(JOPNT,2) -

( COORD (JOPNT, 1) - XBOT )*TAN (ORINT)

YCOOR = -1.19 * TRCPT(JOPNT,l) + 7.78
IT ( TRCPT(JOPNT,2).LT.YCOOR ) THEN

TRCPT(JOPNT,1) = ( 7.78 + TAM(ORINT )*COORD(JOPNT,1)
* - COORD(JOPNT,2) ) / ( 1.19 + TAN(ORINT))I

TRCIT(JOPNT,2) = -1.19 * TRCPT(JOPNT,1) + 7.78
END IF
IT ( TRCPT(JOPNT,2).LT.YBOT ) TflZN

TRCPT(JOPNT,2) = YBOTI
TRC1T(JOPNT,l) = COORD(JOPNT,l)-

* ( COORD(JOPNT,2) - YBOT )/TAN(ORINT)

TRCPT(JOINT,3) =COORD(JOPNT,l) -TDSTR /TDST1
TRCPT (JOINT, 4) = COO4D (JOINT, 2) -TDSTH *TAN (ORINT) /TDST1
IT ( TRCPT(JOPNT,3).LT.XBOT ) THEZN

TRCPT(JOPNT,3) = XBOT
TRCPT(JOPNT,4) - COORD(JOPNT,2)-

ENDIF (COORD(JOPNT,1) - TRCIT(JOPHT,3) ) * TAH(ORINT)I

IF ( TRCPT(JOPNT,3).GT.XRANG ) THEN
TRCPT(JOPNT,3) - XTOP
TRCPT(JOPHT,4) - COORD(JOPNT,2) +I

* (TRCPT (JOPNT, 3) - COO" (JOPNT, 1) ) * TAN (ORINT)

EMIT
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YCOOR = -1.19 * TRCPT(JOPNT,3) + 7.78
iF ( TRCT(JOPNT,4).LT.YCOOR ) THEN

* OR(ON,))/(11 A(RN)TRCPT(JOPNT,3) = ( 7.78 + TAN(ORINT) * COORD(JOPNT,1)

TRCPT(JOPNT,4) = -1.19 *TRCPT(JOPNT,3) + 7.78
END Ir

IT ( TRCPT(JOPNT,4).LT.YBOT ) THEN
TRCPT(JOPNT,4) = YBOT
TRCPT(JOPNT,3) = COORD(JOPNT,l)-

* ( COORD(JOPNT,2) - TRCPT(JOPNT,4) )/TAN(ORINT)
ENDir
iT ( TRCPT(JOPNT,4) .GT.YRRNG ) THEN

TRCPT(JOPNT,4) - YTOP

TRP(JON,)=CODJPT TRCPT(JOPNT,4) - COORD(JOPNT,2) )/TAN(ORINT)

ENDir

YCOOR = 0.698 * TRCPT(JOPNT,l) - 4.56
IT ( TRCPT(JOPNT,2).LT.YCOOR )THEN

TRCPT(JOPNT,1) = ( -4.56 + TAN(ORINT) *COORD(JOPNT,l)
* - COORD(JOPNT2) ) / (-0.698 + TAN(ORINT))

TRCPT(JOPNT,2) = 0.698 * TRCPT(JOPNT,l) - 4.56
ENDiFI YCOOR = 0.698 * TRCPT(JOPNT,3) - 4.56
iF ( TRCPT(JOPNT,4).LT.YCOOR )THEN

TRCPT(JOPNT,3) = ( -4.56 + TAN(ORINT) * COORD(JOPNT,l)
* - COORDIJOPHT,2) )/1-0.698 + TAN(ORINT))

TRCPT(JOPNT,4) = 0.698 *TRCPT(JOPNT,3) - 4.56
END iF
YCOOR = 0.698 * TRCPT(JOPNT,l) + 11.
ir (TRCPT(JOPNT,2).GT.YCOOR ) THEN

TRCPT(JOPNT,l) = ( 11. + TAN(ORINT) * COORD(JOPUT,1)
* - COORD(JOPNT,2) )/( -0.698 + TAN(ORINT))

TRCPT(JOPNT,2) - 0.698 *TRCPT(JOPNT,1) + 11.
END ir

IV ( TRCPT(JOPNT,3).LT.TRCTOOR ,1 ) THEN
TRCTXJPT3 = TRP( 11. T,1IN)*COR(OP

RCTY= RP(JOPNT,2))/(-068+TNRN)ITRCPT(JOPNT4) = 0.98*CI T(JOPNT,3) +1.

TRCT(J 2 = TRCPT(JO I'NT,4

TRCPT(JOPNT,3) = TRCTJPT3

TRCPT(JOPNT,3) = TRCTX

( T h C P T jRC P T 
- T R C P T (J)N=, 2 ) ) * *

TDIST(JOPNT) = SQRT( ( TRCPT(JOPNT,3) - TRCPT(JOPNT,l) )**2 +

JOPNT -=ON
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GO TO 30
ENDIF

CORP.S = TRCPT(JOPNT,3) - TRCPT(JOPNT,l)

IT CORRS.LE. 0.01.AIID.CORRS.GE.0. )CORPS - 0.01
IT CORRS.GE.-O.Ol.AND.CORRS.LT.0. )CORPS =-0.01

TSEND(JOPNT) =(TRCPT(JOPNT,4)-TRCPT(JOPNT,2) )/CORRS
C
C CALCULATE TERMINATION POINTS

C IT TRACE LENGTH IS SMALLER THAN MEAN LENGTH, TERMINATE ATI
C THE NEAREST NEIGHBOR FIBER, IF IT IS GREATER THAN THAT or MEAN
C TERMINATE AT THE SECOND NEAREST NEIGHBOR FIBER.

IG4EAN = (TRCPT(JOPNT,3) + TRCPT(JOPNT,l) ) /2.I

YMEAN = (TRCPT(JOPNT,4) + TRCPT(JOPNT,2) ) /2.
IFA =

xrLAG = 0
JrLAXL = 0 RP(ON,)-TRP(ON,))/2
XMANL = (TRCPT(JOPNT,3) - TRCPT(JOPNT,3) ) /2.

XM~AX0 = XMAXLI
XHINO = XMINL

C
DO 100 IOPNT = 1, NOFPT
XCROS= (SECON (IOPNT) *CORFP (IOPNT, 1) -TSEND (JOPNT) *TRCPT (JOPNT, 1)

* + TRCPT(JOPNT,2) - CORFP(IOPNT,2))/
* ( SECON(IOPNT) - TSEND(JOPNT))

IF ( XCROS.GT.TRCPT(JOPNT,3) .OR.XCROS.LT.TRCPT(JOPNT,l)

YCROS = SECON(IOPNT) *(XCORS - CORFP(IOPNT,l) ) +

I( TRCPT(JOPNT,4).GE.TRCPT(JOPNT,2) ) THEN

IF ( YCROS.GT.TRCPT(JOPNT,4) .OR.YCROS.LT.TRCPT(JOPNT,2))
SGO TO 100

ELEIF ( YCROS.GT.TRCPT(JOPNT,2) .OR.YCROS.LT.TRCPT(JOPNT,4) )
* GOTO 100

TRILH = SQRT((XGbEAN-XCROS)**2 + (YMEAN-YCROS)**2I
IF (TRILH.GT.TDSTH )GO TO 100

C

IF (XCROS.GE.XMEAN ) ILAG = IFLAG + 1I
IF (XCROS.LT.XMEAN )JFLAG = 3TLAG + 1
XRZSI = XCROS - XMEAN

IF (iFLAG.EQ.1 ) DAXL = XRESI

IF ( JLAG.EQ.1 )XMINL = XRESII
IF (iFLAG.GT.l.AND.XRESI.GT.XG4AXL ) MGAXL = XRESI
IF (JFLAG.GT.1.AND.XRESI.LT.XMdINL ) KOINL = XRZSI

100 CONTINUE C COSIDE SE 2 EFEC
C

IF ( JOPNT.GT.1 )THENI

DO 110 KPONT 1, KOPNT
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XCROS= (TSEND (KPONT) *TRCPT (KPONT, 1) -TSEND (JOINT) *TRCPT (JOINT, 1)
* + TRCPT(JOPNT,2) - TRCPT(KPONT,2))/

(TSEND(KPONT) - TSZND(JOPNT))

IF ( XCROS.GT.TRCPT(JOPNT,3) .OR.XCROS.LT.TRCPT(JOPNT,1)

YCROS = TSEND(KPONT) *(XCROS - TRCPT(KPONT,1) ) +

* TRCPT (KPONT, 2)
IF ( TRCPT(JOPNT,4).GE.TRCPT(JOPNT,2) ) THEN

IF ( YCROS.GT.TRCPT(TOPNT,4) .OR.YCROS.LT.TRCPT(JOPNT,2) )

ELS GO TO 110

IF ( YCROS.GT.TRCPT(JOPNT,2) .OR.YCROS.LT.TRCPT(JOPNT,4) )I * NDIF GO TO 110

C
TRITH = SQRT((XMEAN-XCROS)**2 + (YMEAN-YCROS)j**23 IF ( TRITH.GT.TDSTH ) GO TO 110
XRESI = XCROS - X1M.AN
IF (XRESI.GT.0. .AND.XRESI.siT.XM4AXL ) MQAXL = XRESI
IF (XRESI.LT.0. .AND.XRESI.LT.XG4INL ) MGINL, = XRESII110 CONTINUE

END IF
C

CALL GGUBS( DSEED, 1, RSCLEI IF ( RSCLE(l).LE.0.232 ) THEN
TRCPT(JOPNT,l) = XMAN + XMINO
TRCPT(JOPNT,3) = XMEAN + 204AX0U ~ ~~~~ELSERP(ON,)=XEN+~4N
TRCPT(JOPNT,l) = Xb7EAN + XMAXL

END IF
TRCPT(JOPNT,2) = TSEND(JOPNT) * ( TRCPT(JOPNT,1) - ME~AN)

*~ +YMEAN

TRCPT(JOPNT,4) = TSEND(JOPNT) * ( TRCPT(JOPNT,3) - XMEAN)
*~ +YMEANITDIST(JOPNT) = SQRT( (TRCPT(JOPNT,3)-TRCPT(JOPNT,1))**2 +

* ~(TRCPT (JOPNT, 4) -TRCPT (JOPNT, 2)) **2
IF ( TDIST(JOPNT).LT.TRUNL ) THENI JOINT = JOPNT -1

GO TO 30
ENDir

IT ( JOPNT.LT.NOLPT )Go To 30
C

WRITE (6, 900)
DO 45 KOPNT = 1, NOFIT
WRITE(6,910) (CORFP(KOPNT,I), I = 1, 4)

45 CONTINUE
WRITE (6, 900)I DO 40 KOPNT = 1, NOLPT
WRITE(6,910) (TRCPT(KOPNT,I), I = 1, 4)3 C40 CONTINUE

900 rORMAT(//,5X,'SIZ4UATIONS oF THE TRACE LENGTHES',//)
910 ro~mAT( 5X,2(2(F15.7,SX),/,5X))
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Appendix D

USER MANUAL AND LIST FOR "TRACESIM"I
D.1 IntroductionI

Program TRACESIM is used to analyze a blocky rock mass behavior. For this, the

fracture pattern is first generated in a rock slope, followed by a topological analysis of fully

persistent rock blocks. Finally, the stability analysis for a given rock block is performed

using Coulomb's failure criterion. Output data can be stored on a tape so that plotting of the

results is possible.

Program TRACESIM can be run both on VMS and on Unix operating systems. In

the case of VMS system, since one can attach a random number generator such as IMSL

mathematical package, minor changes in the program TRACESIM are needed (in

subroutines HPOIS, NHPOI and PATEN).

D.2 Input Manual for Program TRACESINI

Free format is used for all input data except for the title. According to the input

option (MOPTN), maximum three plotting data files are generated to plot the fracture

pattern, effective fractures and kinetically unstable rock blocks.I
I. TITLE (20A4)

2. Analysis option data: NPOIN, NOSET, NOSIM, MOPTN, NSTAT, NCASE,
NSYST

9 NPOIN: No. of fractures generated in a slope

* NOSET: No. of fracture sets in a slope

e NOSIM No. of simulations for a given data

* MOPTN : Printout optionI
I
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a. MOPTN = 1 : Standard output of the result

b. MOPTN = 2: Store simulated fracture pattern in file 7 i
c. MOPTN = 3 : Store effective fractures and intersection points in

file 8

d. MOPTI I = 4 : Store cohesional and frictional forces of rock
blocks in file 10

e. MOPTN = 5 : Store simulated fracture pattern, effective
fractures and kinetically unstable rock blocks in files 7, 8 and 9,
respectively.

" NSTAT: Option for statistical analysis
a. NSTAT = 0: Do not consider

b. NSTAT = 1 : Store the number of kinematically admissible rockblocks according to volume.

c. NSTAT = 2 : Store the number of kinematically admissible rock i

blocks according to dip angle.

" NCASE: No. of analysis cases

" NSYST: Operating system
a. NSYST = 1: VMS system 3
b. NSYST = 2: Unix system

3. Read statistical analysis data ( skip if NSTAT = 0 ) VARMN, DSTEP,
NSTEP, NREG1, NREG2

* VARMN : Minimum volume or dip angle according to NSTAT

* DSTEP: Size of increment

" NSTEP: Total no. of increments

" NREG 1 : Maximum number of simulations used to store the data in the
plotting file (NREG1 < NOSIM)

" NREG2 : Maximum number of data case used to store the data in the
plotting file (NREG2 < NCASE)

4. Data for slope geometry : ANGLE, HEIGHT, RANGE, WEIGT, SFMAX
(use any consistent units)

" ANGLE: Slope angle in degrees 3
" HEIGHT: Slope height

" RANGE : Distance between slope toe and maximum slope face (see
Fig. 6-2 in the text)

" WEIGT: Unit weight of rock material 3
I
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* SFMAX : Safety factor used in the kinetic analysis

5. Read geometric option and mechanical properties of rock material (Total no.
of data sets = NOSET) : IOSET, NPROP(IOSET,4), PROPT(IOSET,7),
DSEED, STAND (use any consistent units)

* IOSET : No. of fracture sets

" NPROP(IOSET, 1) : No. of fractures generated

" NPROP(IOSET,2) : Options for midpoint models of fractures

a. NPROP(IOSET,2) = : Homogeneous Poisson point process
model

b. NPROP(IOSET,2) = 2 : Non-homogeneous Poisson point
process model

" NPROP(IOSET,3) : Options for trace length distribution models

a. NPROP(IOSET,3) = 1 : Exponential distributrion model

b. NPROP(IOSET,3) = 2: Lognormal distribution model

* NPROP(IOSET,4) : Options for fracture orientation models

a. NPROP(IOSET,4) = 1: Von Mises distribution model

b. NPROP(IOSET,4) = 2 : Wrapped normal distribution model
(currently ignored)

c. NPROP(IOSET,4) = 3: Uniform distribution model

d. NPROP(IOSET,4) =4: Fixed (i.e., parallel) orientation model

" PROPT(IOSET, I) : Mean trace length

" PROPT(IOSET,2) : Standard deviation of trace length (input 0 when
NPROP(IOSET,3) = 1)

* PROPT(IOSET,3) : Mean fracture orientation in degrees

" PROPT(IOSET,4) : Concentration factor of the Von Mises orientation
distribution. For other distribution, i.e., NPROP(IOSET,4) = 2, 3 or 4,
set PROPT(IOSET,4) = 0.

* PROPT(IOSET,5) : Cohesion of fracture

* PROPT(IOSET,6) : Friction angle of fracture

* PROPT(IOSET,7) : Tensile cut-off stress of fracture

* Read random number seed : DSEED or ISEED (input integer value
when NSYST = 2)

* Input max. radius of influence when NPROP(IOSET,2) = 2: STAND
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D.3 Program Listing : TRACESIM I
PROGRAM TRACESIM

C
CCCCCCCCCCCCCccCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C C
C PROGRAM TRACESIM IS INITIALLY INTENDED TO SIMULATE THE C

C MECHANICAL FRACTURING BEHAVIOR OF JOINTS ON A SLOPE C
C WHICH INCLUDES WING CRACK, COALESCENT CRACK AND SECOND C
C CRACK USING STOCHASTIC JOINT GEOMETRY MODEL. C
C C
C VERSION 1 IS DEVELOPED IN THE ROCK MECHANICS GROUP AT C
C MIT, FEB. 1990, USING JVNC SUPER COMPUTER. C
C THIS VERSION IS USED FOR THE SLOPE STABILITY ANALYSIS C

C CONSIDERING FULLY PERSISTENT ROCK BLOCK MODEL C
C C
C VERSION 1.1 IS UPDATED AND ADAPTED TO UNIX SYSTEM C

C C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)

COM1MON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SYMAX, WEIGT, NCASE I

COMMON/CONTOL/NMODE, SFMIN, OSIM
COMMON/STATIC/NSTAT, VARMN, DSTEP, NSTEP, ICASE, NREG1, NREG2
DIMENSION KK(10000), AA(40000), TITLE(20)

NRVAR = 40000
NIVAR = 10000

NDOFN = 2 CI
C*** OPEN STATEMENT
C

OPEN (5, FILE='tracesim.dat5', STATUS='UNKNOWN' )
OPEN (6, FILE='slope.out6', STATUS='UNKNOWN'

C
READ (5,q00) TITLE
WRITE(6,900) TITLE

C
C 1. NO. OF SIMULATED JOINTS IN A SLOPE : NPOIN
C 2. NO. OF JOINT SETS : NOSET I
C 3. NO. OF SIMULATIONS : NOSIM

C
C 4. PRINTOUT OPTION : MOPTN
C 1 = PRINT A SIMULATED TRACE PATTERN IN STANDARD OUTPUT FILE 6
C 2 = PRINT A SIMULATED TRACE PATTERN BOTH
C IN STANDARD OUTPUT FILE 6 AND IN PLOTTING FILE 7
C 3 = PRINT A DETECTED TRACE PATH IN PLOTTING FILE 8 I
C 4 = STORE SAFETY FACTOR IN FILE 10

C 5 = STORE ALL DATA IN PLOTTING FILES 7, 8 AND 9

C
C 5. OPTION FOR STATISTICAL ANALYSIS : NSTAT
C 0 = DO NOT CONSIDER
C 1 = STATISTICAL ANALYSIS OF S.F. ACCORDING TO VOLUME

I
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C 2 = STATISTICAL ANALYSIS OF S.F. ACCORDING TO DIP
C
C 6. OPTION FOR NO. OF CASES : NCASE
C 7. OPTION FOR OPERATING SYSTEM : NSYST
C 1 = RUNNING ON VMS SYSTEM
C 2 = RUNNING ON Unix SYSTEM

C
C 8. ANALYSIS OPTION : NOPTN
C
C 1 = HOMOGENEOUS POISSON MID-POINT PATTERN
C 2 = NON-HOMOGENEOUS POISSON MID-POINT PATTERN
C
C, 9. TRACE LENGTH DISTRIBUTION OPTION : NOPLT

C
C 1 = EXPONENTIAL DISTRIBUTION WITH MEAN TRACE LENGTH
C 2 = LOGNORMAL DISTRIBUTION WITH MEAN AND STD. DEVIATION
C
C 10. ORIENTATION DISTRIBUTION OPTION : NOPDP
C
C 1 = Von Mises DISTRIBUTION FUNCTION WITH MEAN ORIENTATION

C AND CONCENTRATION FACTOR
C 2 = WRAPPED NORMAL DISTRIBUTION FUNCTION WITH MEAN
C ORIENTATION AND CONCENTRATION FACTOR

C 3 = UNIFORM DISTRIBUTION ON [0, 180 deg]
C 4 = FIXED ORIENTATION ON THETA
C
C 11. NO. OF EFFECTIVE JOINTS IN A SLOPE : NTRCE

C
C 12. PRESCRIBED SAFETY FACTOR : SFMAX
C

READ (5,*) NPOIN, NOSET, NOSIM, MOPTN, NSTAT, NCASE, NSYST

WRITE(6,910) NPOIN, NOSET, NOSIM, MOPTN, NSTAT, NCASE, NSYST
MOSIM = NOSIM + 1

C
C ** OPEN STATEMENTS

C
IF ( MOtrN.GE.2 ) OPEN (7, FILE='slope.out7', STATUS='UN]MOWN' )
IF ( MOPTN.GE.3 ) OPEN (8, FILE='slope.out8', STATUS='UNIOOWN' )
IF ( NSTAT.GT.0 ) OPEN (9, FILE='slope.out9', STATUS='UNKIOWN' )
IF ( NSTAT.GT.0 ) OPEN (10,FILE='slope.out0', STATUS=UNNOWN' )

C
C READ PARAMETERS FOR STATISTICAL ANALYSIS

C VARMN : MINIMUM VALUE OF VOLUME OR DIP ANGLE
C DSTEP : SIZE OF INCREMENT

C NSTEP : NO. OF INCREMENTS

IF ( NSTAT.NE.0 ) THEN

READ (5,*) VARMN, DSTEP, NSTEP, NREG1, NREG2
WRITE(6,920) VARMN, DSTEP, NSTEPIENDIF

READ (5,*) ANGLE, HEIGT, RANGE, WEIGT, SFMAX
WRITE(6,930) ANGLE, HEIGT, RANGE, WEIGT, SFMAX

MOPNR = 4
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MPARA = 7
NOPNR = NOSET * MOPNR
NTOTL = NDOFN * NPOIN I
NTOVL = NTOTL * 2

NPARA = NOSET * MPARA

NTLST = MOSIM * NSTEP
MSTOR = NCASE * NSTEP

IF ( NSTAT.EQ.0 ) THEN

NTLST = 1

MSTOR = 1
ENDIF

C
C DYNAMIC DIMENSIONING
C
C NRl OUTPUT OF STABILITY PROBABILITY 1 CASEO(NSTEPNCAsE)
C NR2 OUTPUT OF STABILITY PROBABILITY 2 = CASET(NSTEP,NCASE)
C

NRl = 1
NR2 = NRI + MSTOR
NR3 =NR2 + MSTOR

JVARI = NR3 - 1
DO 1 IVARI = 1, JVARI
AA(IVARI) = 0.

1 CONTINUE

c DO LOOP FOR EACH PARAMETER CASE

DO 500 ICASE = 1, NCASE

C
C DYNAMIC DIMENSIONINGCI
C NR3 MATERIAL PARAMETERS = PROPT(NOSET,MPARA)
C NR4 KINEMATIC UNSTABLE JOINT PATHS = SVALU (MOSIM, NSTEP)
C ( OPTIONAL )
C NR5 MECHANICAL UNSTABLE JOINT PATHS = TVLAU(MOSIM, NSTEP)
C ( OPTIONAL )
C NR6 : MID POINTS DIMENSION = COORM(NPOIN,2)
C NR7 : END POINTS DIMENSION = COORE(NTOTL, 2) I
c

NR4 = NR3 + NPARA
NR5 = NR4 + NTLST
NR6 = NR5 + NTLST
NR7 = NR6 + NTOTL
NRS = NR7 + NTOVL

C Nil : NO. OPTION PARAMETERS IN TOTAL JOINT SETS = NPROP(NOSET,4)

C N12 : NO. INTERSECTION POINT AT EACH TRACE = NINPT (NPOIN)
C

Nil = 1
N12 = Nil + NOPNR
N13 = N12 + NPOIN

LVAR1 = NR6 - 1
LVAR2 - N12 - 1

DO 5 IVARI = NR3, LVAR1

I
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5 AA(IVARI) = 0.
DO 6 IVARI = 1, LVAR2

6 KK(IVARI) = 0

C
C MAIN LOOP
C

DO 100 1031)1 = 1, NOSIM
C
C INITIALZE ARRAYS
C

DO 10 IVARI = NR6, NRVAR

10 AA(IVARI) = 0.I DO 20 IVARI = N12, NIVAR
20 KK(IVARI) = 0

C
C CALL MAIN OPTIONI C

CALL MAINS ( AA(NR3 ), AA(NR6 ),AA(NR7 ),KK(NI1 ) KK(N12 )
* MAXPT, NOEFJ, MAXBT)

IF ( NOEFJ.EQ.0.OR.MAXBT.LT.2 ) THEN
WRITE(6,980) NOEFJ, MAXBT
GO TO 100

C END IF

CU ALGOERCSREIGOTO
NTRCE = NOzFJ + 2
NTOCY = NTRCE *NTRCE

NTOCO = NOZFJ *4

C NS TAECNETVT ARX=XON(TCNRE
C NRS TRACE CONNECTIVITY MATRIX = YCONN (NTRCE, NTRCE)

C NR1O COORDINATE MATRIX Or EFFECTIVE, TRACES = COORF(NOEFj,4)
C
C N13 NO. INTERSECTION POINTS AT EFECTIVE JOINT = NINEP(NOErJ)
C N14 MAIRIAL PROPERTY AT EACH EFFECTIVE JOINT = NMTRL(NOEFJ)

NR9 B+ TC

=R1 N1 + NTOCO,

N14 N 113 + NOEFJ
N115 N 1144+ NOEFJ

NRTOT = NR11 - I

NITOT = N115 - 1
XERRO = 0

IF ( NRVAR.GT.NRTOT )GO TO 30
WRITE (6, 950)
IERRO = IERRO + 1

30 CONTINUE

IF ( NIVAR.GT.NITOT )GO TO 40
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WRITE (6, 970)
IERRO = IERRO + 1

40 CONTINUE
IF ( IERRO.GT.0 ) STOP

C
CALL KINEM ( AA(NR1), AA(NR2 ), AA(NR3 ), AA(NR4 ), AA(NR5 ),

AA(NR6 ), AA(NR7 ), AA(NR8 ), AA(NR9 ), AA(NRIO),
* KK(NI1 ), KK(N12 ), KK(N13 ), KK(N14 ),
* MAXPT, NOEFJ

C C
100 CONTINUE500 CONTINUE

900 FORMAT (20A4)

910 FORMAT(//, 5X, NO. JOINTS IN A SLOPE = ', 3X, I5,
* /, 5X, 'NO. JOINT SETS IN A SLOPE = ', 3X, 15,
* /, 5X, 'NO. SIMULATIONS = ', 3X, 15,S, 5X, 'PRINTOUT OPTION = ', 3X, 15,
* /, 7X, (0 NO PRINTOUT

* /, 7X, ( 1 STANDARD PRINTOUT
*/, 7X, ( 2 CREATE PLOTTING FILE 7 )', m

* /, 7X, ' ( 3 CREATE FILES 7 AND 8 )',
* I, 7X, ' 4 INCLUDE PERTURBED DATA )'
* /, 5X, 'STATISTICAL ANALYSIS OPTION = ', 3X, 15,
* /, 7X, ' ( 0 : DO NOT CONSIDER I* I, 7X, ' ( 1 : VOLUME CRITERION
* /, 7X, ' ( 2 : MIN. DIP CRITERION

*, 5X, 'NO. OF SIMULATION CASES = ', 3X, 15, I
* I, 5X, 'OPERATING SYSTEM = ', 3X, i5,
* /, 7X, '( : RUNNING ON VMS SYSTEM )',
* /, 7X, ( 2 : RUNNING ON Unix SYSTEM )'

920 FORMAT(//, 5X, 'STATISTICAL ANALYSIS',
* I, 7X, 'STARTING VOLUME OR DIP = ', 7I0.3,
* I, 7X, 'SIZE OF INCREMNT = ', F10.3,
* /, 7X, 'NO. OF INCREMENTS = ', 110

930 FORMAT(//, 5X, 'SLOPE SHAPE CONFIGURATION',
* I, 7X, 'SLOPE ANGLE ( Degrees ) = ', F10.3,
* I, 7X, 'SLOPE HEIGHTS = ', 7I0.3,

*, 7X, 'FREE SURFACE RANGES r1 ', 70.3, m
* II, 5X, 'UNIT WEIGHT OF ROCK MASS = ', 710.3,
* I, 5X, 'PRESCRIBED SAFETY FACTOR = ', 7I0.3

950 FORMAT(//, 5X, '*** INCREASE STORAGE FOR REAL ARRAY' )
970 FORMAT(//, 5X, ' ** INCREASE STORAGE FOR INTEGER ARRAY' I980 FORMAT(//, 5X, '*** NOT APPROPRIATE JOINT PATTERN ***',

* /, 7X, 'TOTAL INTERSECTION POINTS = ', I5,

/, 7X, 'TOTAL INTERSECTING BOUNDARY = ', 15) m
C

STOP

CCC END
C

SUBROUTINE MAINS ( PROPT, COORM, COORE, NPROP, NINPT,
* MAXPT, NOEFJ, MAXBT I

C SUBROUTINE MAINS CONTROLS THE OPTIONS I
I
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C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)

COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, ZOSIM, NSYST,
NOSET, ANGLE, HZIGT, RANGE, SFMAX, WEIGT, NCASE

COMMON/CONTOL/NMODE, SFMIN, MOSIM

COMION/STATIC/NSTAT, VARiOI, DSTEP, NSTVP, ICASE, WREGI, NREG2I DIMENSION COORM(NPOIN, 2), COORE(NPOIN, 4), PROPT(NOSET, 7)
DIMENSION NPROP (NOSET, 4), NINPT (NPOIN)

C
c FIRST, PROGRAM TRACESIM SIMULATES THE APPROPRIATE JOINT

C PATTERN IN A SLOPE ACCORDING TO THE OPTIONS OF

C NOPTN, NOPLT AND NOPDP.

I CALL GENES ( COORM, COORE, PROPT, NPROP)
C
C SECOND, CONSIDER THE GEOMETRICALLY ADMISSIBLE JOINT PATHS

CALL GEOTY ( COORM, COORE, NINPT, MAXPT, NOEFJ, MAXBT
C

RETURN

CC END

C
SUBROUTINE GENES ( COORM, COORE, PROPT, NPROP

C SUBROUTINE GENES GENERATES THE JOINT PATTERN IN A SLOPE
C ACCORDING TO THE OPTIONS OF NOPTN, NOPLT AND NOPDP.I C
C IMPLICIT DOUBLE PRECISION (A-K, O-Z)

COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, XOSIM, NSYST,
* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASEI DIMENSION COORM (NPOIN, 2), COORE (NPOIN, 4)

DIMENSION NPROP (NOSET, 4), PROPT (NOSET, 7)

C
PiRAD = 3.1415926 / 180.

C READ GEOMETRY OPTIONS

I IF ( IOSIM.EQ.1 ) THEN
NTRPT = 0
DO 10 KOSET = 1, NOSET

READ (5,*) IOSETI READ (5,*) ( PROP(IOSET,JOSET),JOSET- 1, 4)
READ (5,*) (PROPT(IOSET,JOSET),JOSET= 1, 7

1fRITE(6,910) ZOSET, ( XPROP(IOSET,JOSET),JOSET- 1, 4
WRITE(6,915) ( PROPT(IOSET,JOSET),JOSET= 1, 7)
PROPT(IOSET,3) = PROPT(IOSET,3) * PIRAD

PROPT(IOSET,6) = PROPT(IOSET,6) - PIRAD

NTRPT = NTRPT + NPROP(IOSET,1)

10 CONTINUE
IF ( NTRPT.NE.NPOIN ) THEN

WRITE(6, 920)

ENRETURN

ENDIFINi
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C
C GENERATE THE MID-POINT PATTERN OF JOINTS IN A SLOPE NOPTN

IPOIN = 0

DO 400 IOSET = 1, NOSET
NOPTN = NPROP(IOSET,2)
GO TO (100, 200), NOPTN

C
C A HOMOGENEOUS POISSON POINT PATTERN

100 CONTINUE
CALL HPOIS ( COORM, ISEED, DSEED, NPROP, IOSET, IPOIN
GO TO 300

C I
c A NON-HOMOGENEOUS POISSON POINT PATTERN
C
200 CONTINUE

CALL NHPOI ( COORM, ISEED, DSEED, NPROP, IOSET, IPOIN
300 CONTINUE

C GENERATE A TRACE LENGTH AND AN ORIENTATION OF A JOINT
C AT EACH MID-POINT ACCORDING TO NOPLT AND NOPDP

CALL PATEN ( COORM, COORS, ISEED, DSEED, NPROP, IOSET,

* PROPT, IPOIN

400 CONTINUE

910 FORMAT(//, 5X, *** JOINT SET NO. 1 ', I5,
* /, 7X, 'NO. OF JOINTS = 15,
* /, 7X, 'OPTION FOR JOINT PATTERN DISTRIBUTION = ', I5,

* /, 9X, '( 1 : HOMO. POISSON POINT PATTERN '
* /, 9X, '( 2 : NON-HOMO. POISSON POINT PATTERN )'
* /, 7X, 'OPTION FOR JOINT LENGTH DISTRIBUTION = ', I5,

*, 9X, '( 1 : EXPONENTIAL LENGTH DISTRIBUTION )' I
* I, 9X, '( 2 : LOGNORMAL LENGTH DISTRIBUTION )'
* 1, 7X, 'OPTION FOR ORIENTATION DISTRIBUTION = ', 15
* /, 9X, ( 1 VON MISES ORIENTATION DISTRIBUTION )'

*, 9X, ( 2 WRAPPED NORMAL DISTRIBUTION)'
* /, 9X, ( 3 UNIFORM ORIENTATION DISTRIBUTION )'

* I, 9X, '( 4 FIXED ORIENTATION )' )
915 FORMAT(//, 7X, 'GEOMETRIC PARAMETERS OF JOINTS',

* /, 9X, 'MEAN JOINT LENGTH = ', F10.3, I
* 1, 9X, 'STD. DEVIATION (LOGNORMAL) = ', F10.3,
* /, 9X, 'MEAN ORIENTATION ( Degree ) ', F10.3,

* /, 9X, 'CONCENTRATION FACTOR - ', F10.3,
* /, 7X, 'MECHANICAL PROPERTIES OF JOINTS',
* /, 9X, 'COHESION OF JOINT FACE = ', F10.3,
* /, 9X, 'FRICTION ANGLE OF JOINT FACE (Dog.) = ', F10.3,

* /, 9X, 'TENSILE CUT-OFF STRESS OF JOINT = ', F10.3
920 FORMAT(//, 5X, '*** WARNING *** NO. POINT NOT MATCHED' )

C C RETURN

END
CCC

I
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C
SUBROUTINE HPOIS ( COOR4, ISSED, DSEED, NPROP, IOSET, IPOIN)

C

C SUBROUTINE HPOIS GENERATES THE HOMOGENEOUS POISSON POINT
C PATTERN IN A SLOPE
CIC IMPLICIT DOUBLE PRECISION (A-H, O-Z)

COMI4ON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
* NOSET, ANGLE, JIEIGT, RANGE, SFMAX, WEIGT, NCASE

DIMENSION COORM(NPOIN,2), TMPRY(2)I DIMNSION NPROP (NOSET, 4)
C
C CALL RANDOM NUMBER GENERATOR
C ACCORDING TO UNIX OR VMS MODE
C

IF ( IOSIM.EQ.1.AND.IOSET.EQ.1 ) THEN
IF ( NSYST.EQ.1 ) THEN

C REAL SEED FOR VMS SYSTEM ( USE IMSL ROUTINE)
CUREAD (5, *) DSEED

ELSE
C
C **INTEGER SEED FOR UNIX SYSTEM FUNCTION RANDOMI C PREAD (5,* ) ISEED

END IF
END IF

NOPNT = NPROP(IOSET,l)
IOPNT = 0
PIVAL = 3.1415926

C

C ** CLLINTRINSIC FUNCTION IN UNIX SYSTEM

TMPRY(l) = RANDOM (ISEED)
IED= IRANDM (ISEED)

TMPRY(2) = RANDOM (ISEED)I ISEED = IRANDM (ISEED)
ELSE

C
C *~CALL IMSL IN VMS SYSTEM

ENDALF GGUBS (DSEED, 2, TPY

TMCX = TMPRY(1) * RANGE
TMISP = TIMPCX * TAN(ANRAD)
TMPCY = TMPRY(2) * HEIGT

C CHECK THE SLOPE FACE BOUNDARY
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C
Ir ( TmPCY.GT.TmPsP ) Go To 10

ION= IPoIN + 1
IOPNT = IOPNT + 1

COORM(IPOIN,l) = TMPCXI
COORZ4(IPOIN,2) = TMPCY
IF ( IOPNT.LT.NOPNT ) GO TO 10

RETURNI
END

CCC

SUBROUTINE NHPOI ( COORM, ISEED, DSEED,
* NPROP, IOSET, IPOIN, ICASE

C SUBROUTINE NHPOI GENERATES THE NON HOMOGENEOUS

C HIERARCHICAL POINT PATTERN IN A SLOPE.
C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)

COM14ON/CONTRO/NPOIN, NTRCE, NoSIM, NDOrN, mOPTN, IOSIM, NSYST,I
* NOSET, ANGLE, HEGT, RANGE, SFMAX, WEIGT, NCASE

DIMENSION COORM(NPOIN,2), TUPRY(2)
DIMENSION NPROP (NOSET, 4)

C THE FIRST SET CAN BE REALIZED.

CI
NOPNT = NPROP(IOSET,l)
IOPNT = 0

PIVAL = 3.1415926I
ANRAD = ANGLE *PIVAL / 180.
NOPRS = NPOIN -NOPNT

C

IF ( IOSIM.EQ.1.AND.IOSET.NE.1 )THENI
READ (5,*) STAND
WRITZ(6,100) STAND

ENDiF

C DO 50 IOPNT = 1, NOPNT
10 CONTINUE
CI

IF ( NSYST.EQ.2 ) THEN

C
C **CALL RANDOM IN UNIX SYSTEM

C
T'MPRY(l) = RANDOM (ISEED)
ISEED = IRANDM (ISEED)

TMPRY(2) = RANDOM (ISEED)I
ISEED = IRANDM (ISEED)

ELSE
C
C VMS SYSTEMI
C
C CALL GGUBS (DSEED, 2, TNPRY)3
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C
KRNDM = TMPRY (1) - NOPRS + 1IOR ORMKNMl
COORY = COORM (KRNDM, 1)
MCOORY COORM +( SND 2) MR~l TAD 2

TNPCY = COORX + STAND * TNPRY(1) - STAND /2.

THPSP = TMPCX * TAN(ANR.D)
C

IF (TMPCX.LE.0. .OR.TMPCX.GE.RANGE )GO TO 10
IF (TMPCY.LE.0. .OR.TMPCY.GE.HEIGT )GO TO 10

IF POI.T.NPS GO TO 10

C(IPOIN 1 = TMPCX+

COORM(IPOIN,2) = TMPCY

IT ( IOPNT.LT.NOPNT ) GO TO 10

100 FORMAT(5X,'INFLUENCE ZONE OF CLUSTERING PATTERN =',3X,F12.2)

RETURN
END

CCC

SUBROUTINE PATEN ( COORM, COORE, ISEED, DSEED, NPROP, ZOSET,
* PROPT, IPOIN

3C SUBROUTINE PATEN EVALUATES THE TRACE LENGTH AND ORIENTATION
C OF A TRACE ACCORDING TO NOPLT AND NOPDP

C IMPLICIT DOUBLE PRECISION (A-H, O-Z)
COMMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MlOPTN, 105114, NSYST,

NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE

COMMON/CONTOL/NMODEf SFMIN, M40511I ~DIMENSION COORM(NPOIN, 2), COORE (NPOIN, 4), TMPA1 (1), TmPA2 (1)
DIMENSION NPROP (NOSET, 4), PROPT (NOSET, 7)

C
PIRAD = 3.1415926IRADIN = PIRAD /180.
ANRAD = ANGLE *RADIN

C
NOPNT =NPROP(IOSET,l)
NOPLT =NPROP(IOSET,3)
NOPDP = NPROP(IOSET,4)

CITRCEM = PROPT(IOSET,l)
STDTN =PROPT(IOSET,2)
THETA = PROPT(IOSET,3)
CONFT = PROPT(IOSET,4)

C USE MID-POINT COORDINATES EITHER FROM SUBROUTINE HPOIS OR
C FROM NHPOI.
C FROM IML, CHOOSE SUBROUTINES GGEXO( OR GGNLG FOR EXPONENTIAL
C AND LOGNORMAL TRACE LENGTH DISTRIBUTION, RESPECTIVELY.
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C

KPOIN = IPOIN - NOPNT
JPOIN =KPOIN + 1

10 CONTINUE

KPOIN = KPOIN + 1

C T ( NSYST.EQ.1 )THENI

C IF ( NOPLT.EQ.1 ) THEN
C CALL GGEXN (DSEED, TRCEM, 1, TMPA1

C ELSE

C CALL GGNLG (DSEED, 1, TRCEM, STDTN, TMPA1I
C ENDIF

ELSE

C *** EXPONENTIAL TRACE LENGTH GENERATOR WITH UNIX SYSTEM
C

TMPA1(1) = RANDOM (ISEED)
ISEED = IRANDM (ISEED)I
TMPA1(1) = -ALOG ( 1. - TMdPA1(1) )*TRCEM

END IF

TCLEN =TMPA1 (1) / 2.
C

C VON MISES ORIENTATION DISTRIBUTION

CI
IF ( NOPDP.EQ.1 ) THEN

C xixd~x = 1. + ( 0.5*conft )**2 + (0.5*conft )**4 /4.
C + ( 0.5*conft )**6 /36.
C xinai-. -1. / xindx 2. *pirad)
C

C ** UNIX SYSTEM FUNCTION
CI

IF ( NSYST.EQ.2 )THEN
FREQX = EXP (CONFT

99 CONTINUE

Tl.PA2(l) = RANDOM (I3EED)I
ISEED = IRANDM (ISEED)
YINDX = TMPA2 (1) * PIRAD * 2.
FREQY = EXP ( CONFT * COS( YINDX -THETAI

FREQZ = FREQY / FREQX
T!IPA2(l) = RANDOM (ISEED)

ISEED = IRANDM, (ISEED)

IF ( T14PA2(1) .GT.FREQZ ) GO TO 99I
ORINT = YINDX

ELSE
C

C **VMS MODE
C
C CALL GGVMS ( DSEED, CO?4FT, 1, TMPA2

ORINT = TmPA2 (1) + THETAI
ENDIF

END IF

C

C CURRENTLY (NOPDP.EQ.2) OPTION (WRAPPED NORMA" DISTRIBUTION)

C IS IGNORED
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C IF ( NOPDP.EQ.2 ) THEN

C

IF ( NOPDP.EQ.3 ) THEN

IF ( NSYST.EQ.1 )THEN

CIC ELECALL GGUBS (DSEED, 1, TMPA2

C

C **UNIX SYSTEM FUNCTIONI C TMPA2(l) = RANDOM (ISEED)

ISEED = IRANDM (ISEED)
ENDIF

ORINT =TMPA2(1) * PIRAD
END IF

CIC FIXED ORIENTATION
C

IF ( NOPDP.EQ.4 ) ORINT = THETA
CIC CALCULATE END POINTS OF EACH TRACE
C

XCOOR = COORM(KPOIN, 1)
YCOOR = COORM (KPOIN, 2)
XCOR1 = XCOOR -~ TCLEN *COS(ORINT)

XCOR2 = XCOOR + TCLEN * CSNORINT)ICR CO CLN*CSOIT
YCOR2 = YCOOR -TCLEN * SIN (ORINT)

C
C CONSIDER THE BOUNDARY CONDITIONS

I C IF ( YCORl.GE.HEIGT ) THEN
YCOR1 = HEIGT
IF ( ORINT.EQ.PIRAD/2. )THEN

ESXCOR1 = XCOOR

XCOR1 = XCOOR + ( YCOR1-YCOOR )/TAN (ORINT)

ENEND IF

IF ( YCOa2.GE.HEIGT ) THEN
YCOR2 = HEIGT
IF ( ORINT.EQ.PiRAD/2. ) THEN

XCOR2 = XCOOR

ELSE

ENXCOR.2 = XCOOR + ( YCOR2-YCOOR )/TAN (ORINT)
END IF

EIF (YO1L. )TE
IT(YCOR1.E0 ) 0.E

IF ( ORINT.EQ.PI.AD/2. ) THEN

ICR CO
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ELSE

ENDIF = XCOOR + ( YCOR1-YCOOR )/TAN (ORINT)
END IF

IF ( YCOR2.LE.O ) THEN
YCOR2 = 0.
IF ( ORINT.EQ.PIRAD/2. ) THEN

XCOR2 = XCOOR
ELSE

XCOR2 = XCOOR + ( YCOR2-YCOOR )/TAN (ORINT)
ENDIF

IF ( XCOR1.GE.RANGE ) THEN
XCOR1 = RANGE
YCOR1 = TAN (ORINT) *(XCOR1-XCOOR ) + YCOOR

ENDIF

IF ( XCOR1.LE.O. ) THENI
XCOR1 = 0.

YCOR1 = TA.N(ORINT) *(XCOR1-XCOOR ) + YCOOR
END IF

IT ( XCOR2.GE.VtANGE ) THENI
XCOR2 = RANGE

YCOR2 = TAN (ORINT) *(XCOR2-XCOOR ) + YCOOR

END IFI
IF ( XCOR.2.LE.0. ) THEN

XCOR2 = 0.
YCOR2 = TAN (ORINT) *(XCOR2-XCOOR ) + YCOOR

ENDIFI
c

SLOPi = XCOR1 * TAN(ANRAD)
SLOP2 = XCOR2 * TAN(ANRAD)

ITF ( YCOR1.GT.SLCP1 ) THEN
YCOR3 = YCOOR - YCOR1
XCOR3 = XCOOR - XCORI
IT ( ABS(XCOR3).LT.O.0001 ) THENI

YCOR1 =TAN (ANRAD) * XCOOR

ELSE
TANTC =YCOR3 / XCOR3
XCOR1 =( TANTC * XCOR1 -YCOR.)

* ( TANTC - TAN(ANRAD)
YCOR1 = TAN(ANRAD) * XCOR1

ENDIFI
END IF
IT ( YCOR2.GT.SLOP2 ) THEN

YCOR4 = YCOOR - YCOR2

XCOR4 = XCOOR - XCOR2
IT ( ABS(XCOR4).LT.0.000. ) THEN

YCOR2 = TAN (ANRAD) * XCOOR

ELSEI
TANTC = YCOR4 / XCOR4
XCOR2 = ( TANTC * XCOR2 - COR2)/

* ( TANTC - TAN(ANRAD)
YCOR2 = TAN (ANRAD) * XCOR2I

END IF
END IF



-276-

C
C STORE THE END POINTS OF EACH TRACE INTO COORE
C

COORE(IPOIN,l) = XCOR1
COORE(KPOIN,2) = YCORI
COORE(KPOIN,3) = XCOR2
COORE (KPOIN, 4) = YCOR2
IF ( XCORl.GT.XCOR2 ) THEN

COORE(IcPOIN,l) = XCOR2
COORE(KPOIN,2) = YCOR2
COORE(KPOIN,3) = XCOR1
COORE(KPOIN,4) = YCOR1

END IF

IF (KPOIN.LT.IPOIN ) GO TO 10
C
C IF (MOPTN.GE.1 ),WRITE THE END POINT COORDINATES
C

IF (MOPTN.EQ.1 )THEN
WRITE(6,900) ZOSETI DO 20 KPOIN = JPOIN, NPOIN

WRITE(6,910) ( COORE(KPOIN,JDOFN),JDOFN = 1,4
20 CONTINUE

END IFI IF ( MOPTN.GE.5 ) THEN
IF ( IOSEM.EQ.1.AND.IOSET.EQ.1

* WRITE(7,920) NPOIN, ANGLE, HEIGT, RANGE, NOS., HOPTHI Do 30 KPOIN =JPOIN, IPOIN
WRITE(7,910) ( COORE(KPOIN,JDOFN),JDOFN = 1,4

30 CONTINUE
ENDIF

900 FORMAT(//,5X,'SIMULATED TRACE PATTERN OF JOINT SET = ,15,//)

910 FORMAT(2(5X,F1O.3,5X,F1O.3,/))
920 FORMAT(15, 3F10.3, 15)

RETURN
END

CCC

SUBROUTINE GEOTY ( COORMd, COORE, NINPT, MAXPT, NOEFJ, MAXBT
C

C SUBROUTINE GEOTY EVALUATES THE GEOMETRICALLY
C CONTINUOUS JOINT PATHS
C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)

*COMON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, M4OPTN, 105154, NSYST,

C TO FIND THE EFFECTIVE JOINT PATHS, CALCULATE THE EFFECTIVE
C INTERSECTION POINTS AMONG JOINTS AND SLOPE BOUNDARIES

PIRAD 3.1415926
TANAN =TAN(A.NGLE*PIRAD / 180.)
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XAPEX = HEIGT / TANAN
MAXPP = 0
lITER = 0

5 CONTINUE
MAXPT = 03
MAXET = 0
NOEFJ = 0

ITER = IITER + 1

DO 30 IPOIN = 1, NPOIN
IF ( IITER.GT.l.AND.NINPT(IPOIN) .LT.2 )GO TO 30

NINPT(IPOIN) = 0I
XCOR1 = COORE(IPOIN,l)
YCOR1 = COORE(IPOIN,2)
XCOR2 = COORE(IPOIN,3)

YCOR2 = COORE(IPOIN,4)

SLOP1 = 9.E+10
ELSE

SLOP1 = ( YCOR2-YCOR1 ) X CC0R2-XCORI
END IF

DO 10 JPOIN = 1, NPOIN

IF (JPOIN.EQ.IPOIN ) GO TO 10
IF (IITER.GT.l.AND.NINPT(JPOIN).LT.2 ) GO TO 10
XCOR3 = COORE(JPOIN,l)
YCOR3 = COORE(JPOIN,2)I
XCOR4 = COORE(JPOIN,3)
YCOR4 = COOR(JPOIN,4)3

C CALCULATE THE INTERSECTION POINTS AND CHECK THEIR ADMISSIBILITY
C

COET1 = XCOR4 - XCOR3
COEF2 = YCOR4 - YCOR3I
IF ( COEF.EQ.0. )THEN

SLOP2 = 9.E+10
ELSE

SLOP2 = COEF 2 /COEFi
ENDIF
IF (SLOP1.EQ.SLOP2 )GO TO 10

IF (SLOP1.EQ.9.E+10 )THEN

IF (XINPT.GE.xCOR3.AND.XINPT.LE.XCOR4) THEN

YINPT = SLOP2 * ( XINPT-XCOR3 ) + YCOR3
IF ( YINPT.GE.AMIN1(YCOR1,YCOR2).AND.I

* YINPT.LE.AMAX1(YCOR1,YCOR2) ) THEN

NINPT(IPOIN) = NINPT (IPOIN) + 1

MAXPT = MAXPT + 1.
GO TO 10

END IF
ENDiF

ENDI FI
IF ( SLOP2,.EQ.9.E+10 ) THEN

XINPT = XCOR3
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IF (XINPT .GE .XCOR1 .AND.XINPT.LE .XCOR2 ) THEN

YINPT = SLOPI * ( XINPT-XCOR1 ) + YCOR1
IF ( YINPT.GE.AMIN1(YCOR3,YCOR4) .AND.

YINPT.LE.AMAX1(YCDR3,YCOR4) ) THEN
NINPT (IPOIN) =NINPT (IPOIN) + 1
MAXPT = MAXPT + 1

ENGO TO 10

END IF

ENDIF

COEF3 = SLOP1 XCOR1 -SLOP2 * XCOR3
COEF4 = YCOR3 -YCORII XINPT = ( COEF3 + COEF4 )/(SLOP1 - SLOP2
YINPT = SLOP1 * (XINPT-XCORl) + YCOR1

C
IF (XINPT.LT.XCOR1.OR.XINPT.GT.XCOR2 )GO TO 10IIF (XINPT.LT.XCOR3.OR.XINPT.GT.XCOR4 )Go TO 10
IF (YINPT.LT.AMIN1 (YCoR1, YCOR2) .OR.

* YINPT.GT.AMAX1(YCOR1, YCOR2) ) GO TO 10
IF (YINPT.LT.AMIN1(YCOR3, YCOR4).OR.

YINPT.GT.AMAX1(YCOR3, YCOR4) )GO TO 10
IF (YINPT.GT.HEIGT ) GO TO 10

NINPT(IPOIN) = NINPT(IPOIN) + 1
MAXPT = MAXPT+1

10 CONTINUE
C

C SEARCH FOR INTY.RSECTION POINTS WITH SLOPE BOUNDARIES
C

IF ( AMAXi (YCOR1,YCOR2).EQ. MEIGT )THENI NINPT(IPOIN) = NINPT(IPOIN) + 1
MAXBT = MlAXBT + 1

END IF
IF ( SLOP1.EQ.TANAN )GO TO 20I IF ( SLOP1.EQ.9.E+10 )THEN

XINPT = XCOR1
YINPT = TANAN * XINPTI ELSE
XINPT = ( SLOP1*XCOR1 - YCOR1 )/(SLOP1 TANAN
YINPT = TANAN * XINPT

END IFI IF ( XINPT.EQ.0. .AND.YINPT.EQ.0. )THEN
XINPT = 1.E-10
YINPT = 1.E-10

END IF
IF ( ABS(XINPT-XCOR).GT.0.01.AND.

* ABS(XINPT-XCOR2).GT.0.01 ) GO TO 20
IF ( ABS(YINPT-AMIN1(YCOR1,YCOR2)) .GT.0.01.AND.I * ABS(YINPT-AMAX1(YCOR1,YCOR2)).GT.0.01 ) GO TO 20
IF ( YXNPT.GT.HEIGT ) GO TO 20
NINPT (IPOIN) = NINPT (IPOIN) + 1
MAXBT - X4AXBT + 1

C COUNT THE EFFECTIVE TRACES
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C
20 CONTINUE

IF ( NINPT(IPOIN) .GE.2 )NOEFJ = NOEFJ + 1I
30 CONTINUE

C

MAXPT = MAXPT / 2 + MAXET

C FIND FURTHER ELIMINATIONS

C
IF ( MAXPT.EQ.MAXPP ) GO TO 40
MAXPP = MAXPT

IF ( IITER.GT.10 ) THEN
WRITE (6, 930)

ENDIF

GO TO 5I

C

C DATA PORTHOLEI

C
IF ( MOPTN.GE.5 ) THEN

WRITE (7, 950) NOEFJI
DO 50 IPOIN = 1, NPOIN
IF ( NINPT(IPOIN) .LT.2 )GO TO 50
WRITE(7,940) (COORE(IPOIN,JDOFN),JDOFN =1,4

so CONTINUEI
ENDiF

900 FORMAT(//, 3X, ' ~ SIMULATION NUMBER 15)I
930 FORMAT(//, 5X, '**TOO MANY ITERATIONS**)
940 FORMAT(2(5X,F10.3,5X,F10.3,/))
950 FORMAT(I5)

RETURN
END

C
SUBROUTINE KINEM ( CASEO, CASET, PROPT, SVALU, TVALU, COORM,

* COORE, XCONN, YCONN, COOR", NPROP,

C *NINPT, NINEP, NMTRL, MlAXPT, NOEFJ )I

C SUBROUTINE KINEM EVALUATES THE TOPOLOGICALLY AND KINEMATICALLY
C ADMISSIBLE JOINT PATHS USING MATRIX CONNECTIVITY METHOD
C
C IMPLICIT DOUBLE PRECISION (A-H, O-Z)

COW14ON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, HOPTN, XOSIM, NSYST,

* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASEU
CObMON/CONTOL/NMlODE, SYMIN, MOSIM
COMMON/CNTROL/CRITX (10), CRITY (10), NCRIT, YCRIT
COMbON/CONROL/NCTMX (10, 2)
COMON/STATIC/NSTAT, VARMN, DSTEP, NSTEP, ICASE, NREG1, NREG2I
DIMENSION COORM(NPOIN, 2), COORE (NPOIN, 4), PROPT(NOSET, 4)
DIMENSION XCONN (NTRCE, NTRCE), YCONN (NTRCE, NTRCE)
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DIMENSION CCTMXV(1O), CCTMY(10)
DIMENSION MTM4P1(l0), MTHP2(1O)
DIMENSION COORI(NOEFJ,4), NMTRL(NOEFJ)

DIMENSION NPROP (NOvSET, 4), NINPT(NPOIN), NINEP (NOETJ)
DIMENSION SVALU (MOSIM, NSTEP), TVALU (MOSIM, NSTEP)

DIMENSION CASEO (NCASE, NSTEP), CASET (NCASE,NSTEP)IDIMENSION PROBY(30), TPRBY(100)
C
C FIRST, CALCULATES THE INTERSECTION POINTS AMONG JOINTS AND
C SLOPE BOUNDARY USING EFFECTIVE TRACES

PIRAD = 3.1415926
TANAN = TAN(ANGLE*PIRAD/180.)I NOKTX = 0
KPOIN = 0

C
DO 5 ITRCE = 1, NTRCEI DO 5 JTRCE = 1, NTRCE
XCONN(ITRCE,JTRCE) = 0.
YCONN(ITRCE,JTRCE) = 0.I5 CONTINUE

JCONT = 0
DO 6 IOSET = 1, NOSETI NOPNT = NPROP(IOSET,l)
JCONT = JCONT + NOPNT
MTMP1(IOSET) = JCONT
MTMP2(IOSET) = JCONT - NOPNT + 1

6 CONTINUE
C

Do 420 IPOIN = 1, NPOIN

IF ( NINPT(IPOIN) .GE.2 ) THEN
KPOIN = KPOIN + 1
NINEP (KPOIN) = NINPT (IPOIN)

Do 400 ZOSET = 1, NOSET
IF ( IPOIN.GE.MTMP2(IOSET) .AND.IPOIN.LE.MTMP1(IOSET)

* NMTRL (KPOIN) =IOSST

C400 CONTINUE

Do 410 IDOFN = 1, 4
COORF (KPOIN, IDOFN) =COORE (IPOIN, IDOFN)I410 CONTINUE

ENDIF

420 CONTINUE

KPOIN = 1
DO 50 IPOIN = 1, NOEFJ
ICOUN = 0IKPOIN = KPOIN + 1
XCOR1 = COORF (IPOIN, 1)
YCOR1 = COORF(IPOIN,2)IXCOR2 = COORF(IPOIN,3)
YCOR2 = COORF(IPOIN,4)
IF ( XCORl.EQ.XCOR2 ) THEN
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SLOP1 = 9.E+10
ELSE

SLOPi = ( YCOR2 - YCOR1 )/(XCOR2 - XCOR1

C
C FIRST, CALCULATE INTERSECTION POINT COORD. (XINPT, YINPT)

C WITH SLOPE FACE
C

IF ( SLOP1.NE.TANAN ) THEN

IF ( SLOP1.EQ.9.E+10 ) THENI
XINPT = XCOR1
YINPT = TANAN * XINPT

ELSE

XINPT = ( SLOP1*XCOR1 - YCOR1 )/(SLOP1-TANANI
YINPT = TAMAN * XINPT

ENDIF

IF ( XINPT.EQ.0. *AND.YINPT.EQ.0.) THENI
XINPT = 1.E-10
YINPT = 1.E-10

END IF
IF (ABS(XINPT-XCOR1).GT.0.01.AND.I

* ABS (XINPT-XCOR2) .GT.0.01 ) GO TO 10
IF (ABS(YINPT-AMIN1(YCOR1,YCOR2)) .GT.0.01.AND.

* ABS(YINPT-AMAX1(YCOR1,YCOR2)).GT.0.01 ) GO TO 10
IF (YINPT.GT.HEIGT.OR.YINPT.LT.0. ) GO TO 10I

C
XCONN(1,KPOIN) = XINPT
XCONN(KPOIN,l) = XINPT
YCONN(1,KPOIN) = YINPTI
YCONN(KPOIN,l) = YINPT
NOMfTX = NOMTX + 2
ICOUN = ICOUN + 1I

END IF
10 CONTINUE

LPOIN = 1

C CALCULATE THE INTERSECTION POINTS AMONG JOINTS

DO 30 JPOIN = 1, NOEFJI
LPOIN = LPOIN + 1
IF ( JPOIN.EQ.IPOIN ) GO TO 30
XCOR3 = COOP? (JPOIN, 1)I
YCOR3 = COOP? (JPOIN,2)
XCOR4 = COORF(JPOIN,3)
YCOR4 = COOP? (JPOIN, 4)

C CALCULATE THE INTERSECTION COORDINATES AND CHECK THEIR
C ADMISSIBILITY

COEF1 = XCOR4 - XCOR3
COEF2 = YCOR4 - YCOR3
IF ( COEr1.EQ.0. )THEN

SLOP2 = 9.E+10

SLOP2 = COEF2 /COET1
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END IF
IT SLOPl.EQ.SLOP2 ) GO To 30I IF (SLOPl.EQ.9.E+10 ) THEN

XINPT = XCOR1
IF (XINPT.GE .XCOR3 .AND .XINPT.LE .XCOR4 ) THEN

YINPT = SLOP2 * ( XINPT-XCOR3 ) + YCOR3
IT ( YINPT.GE.AMIN1(YCOR1,YCOR2).AND.
YINPT.LE.AMIN1(YCOR1,YCOR2) .AND.YINPT.LE.HEIGT )GO TO 20

END IF
GO TO 30I ENDIF

IF ( SLOP2.EQ.9.E+10 ) THEN
XINPT = XCOR3I IF ( XINPT.GE.XCORl.AND.XINPT.LE.XCOR2 ) THEN

YINPT = SLOP 1 * ( XINPT-XCOR1 ) + YCOR.
IF ( YINPT.GE.AMIN1(YCOR3,YCOR4).AIID.

*YINPT.LE.AMAX1(YCOR3,YCOR4).AND.YINPT.LE.HEIGT )GO TO 20

END IF
GO TO 30

ENDIF

COEF3 = SLOPi XCOR1 - SLOP2 * XCOR3
COEF4 = YCOR3 -YCOR1

XINPT = ( COEF3 + COEF4 )/(SLOPi - SLOP2I YINPT = SLOP13 XINPT-XCORI ) + YCOR1
C

IF (XINPT.LT.XCOR1.OR.XINPT.GT.XCOR2 )GO TO 30
IF (XINPT.LT.XCOR3.OR.XINPT.GT.XCOR4 )GO TO 30
IF (YINPT.LT.AMIN1(YCOR1,YCOR2) .OR.

* YINPT.GT.AMAX1(YCOR1,YCOR2) ) GO TO 30

IF (YINPT.LT.AMIN1(YCOR3,YCOR4) .OR.I * YINPT.GT.AMAX1(YCOR3,YCOR4) ) GO TO 30
IF (YINPT.GT.HEIGT ) GO TO 30

C
20 CONTINUE

NO4lTX = NObMTX + 1
ICOUN = ICOUN + 1
XCONN(KPOIN,LPOIN) = XINPTI YCONN(KPOIN,LPOIN) = YINPT

30 CONTINUE
C
C CALCULATE THE INTERSECTION COORDINATE WI1TH FREE SURFACE
C

IF AMAX1(YCOR1,YCOR2).NE.HEIGT ) GO TO 40
IF (SLOP1.EQ.9.E+10 )THEN

ELSE XINPT = XCOR1

XINPT = XCOR1 + (HEIGT-YCOR1 )/SLOPi
ENDIF

IF ( AES(XINPT-XCORl).GT.0.01.AND.
* ABS(XINPT-XCOR2) .GT.0.01 ) GO TO 40I YINPT =HEIGT

XCONN(KPOIN,NTRCE) = XINPT
XCONN(NTRCE,KPOIN) = XINPT
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YCONN(KPOIN,NTRCE) = YINPT
YCONN(NTRCE,KPOIN) = YINPT

NOMTX = NOt4TX + 2I
ICOUN = ICOtIN + 1

40 CONTINUE

IF ( ICOUN.NE.NINEP(IPOIN) ) WRITE(6,970) ICOtmI, NINEP(IPOIN)

50 CONTINUE

C

IF ( MOPTN.GE.5 ) THEN
MJOIN = 0
DO 80 ITRCE = 1, NTRCEI
KTRCE = ITRCE
DO 70 JTRCE = KTRCE, NTRCE

IF ( XCONN(ITRCE,JTRCE) .LE.0. ) GO TO 70I
WRITE(8, 960) XCONN(ITRCE,JTRCE), YCONN(ITRCE,JTRCE)
MJOIN = MJOIN + 1

70 CONTINUE

80 CONTINUEI
C

WRITE (7, 940) MJOIN, MAXPT
ENDIF

C DO A MATRIX CONNECTIVITY SEARCHINGI

C CURRENTLY, UP TO 1.0 (TEN) INTERSECTION POINTS CAN BE CONSIDERED

C AS A JOINT PATH
C

NPATR = 10
NPATH = 0
NMODE = 0I
LCOUN = 0

TPATH = 0.

SFM4IN = SP74AXI

DO 300 ICOLl = 1, NTRCE

DO 120 IPATR = 1, NPATRI
DO 110 JDOFN = 1, NDOFN
NCTbM:(IPATRr 3DOFN) = 0

110 CONTINUEI
CCTMX(IPATR) = 0.
CCTMY(IPATR) = 0.

120 CONTINUE

C START SEARCHING :1ST

IF ( XCONN(1,ICOLl) .EQ.0. )GO TO 300

NCTM(,1) = 1
NCTbIX(1,2) = ICOLl
CCTMX(1) = XCONN(,ICOL1)

CCTMY(l) = YCONN(1,ICOL1)

C 2ND
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C
DO 290 ICOL2 = 1, NTRCE
IF (XCONN(ICOL1,ICOL2).EQ.0. ) GO TO 290
IF (XCONN(ICOL1,ICOL2) .EQ.CCTMX(l) ) GO TO 290
IF (ICOL2.EQ.NTRCE.A1ID.XCONN(ICOL1,NTRCE).NE.0. )THEN

NCTMX(2,1) = ICOUlI NCTMX (2, 2) = NTRCE
NPATH = NPATH + 1.
CCTMX(2) = XCONN(ICOL1,NTRCE)
CCTMY(2) = YCONN(ICOL1,NTRCE)

NITER = 2
CALL KIJET ( 2, CCTMX, CCTMY, KOPTN, YPERT
CALL FMODE ( NITER, CCTICC, CCTMY, JYLAG, NMTRL, NomFJ, PROPT,
* SVALU, TVALU

CA~LL OTH( NITER, CCTWC, CCTMY, NCTMCC, PR

CCTMX(2) = XCONN(ICOL1,ICOL2)
CCTMY(2) = YCONN(ICOL1,ICOL2)I NCTMX (2, 1) = ICOUl
NCTMX (2, 2) = ICOL2

C
C **MODIFY THE KINEMATIC JOINT PATH BY NOT ALLOWING THE DECLININGIC 2ND INTERSECTION POINT
C3 C IF ( CCTMY(2) .LE.CCTMY(l) ) GO TO 290

C 3RD
C

DO 280 ICOL3 = 1, NTRCEIIF ( XCONN(ICOL2,ICOL3).EQ.O. ) GO TO 280
IF ( XCONN(ICOL2,ICOL3).EQ.CCTMCX(l) ) GO TO 280
IF ( ICOL3.EQ.ICOL1 ) GO TO 280

NCTHX (3, 1) = ICOL2

NCTMX(3,2) = ICOL3
CCTMX(3) = XCONN(ICOL2,ICOL3)
CCTMY(3) = YCONN(ICOL2,ICOL3)
IF ( CCTMV(3).GE.CCTW(2).AND.CCTMY(3).LE.CCThY(2)

* GO TO280
C

IF ( ICOL3.EQ.1.AND.CCT)M(3).NE.O. ) THENIIF ( XCONN(ICOL2,1).GT.CCTMX(l) ) THEN
KOPTN = 0
CALL KINET ( 3, CCTMXV, CCTMY, KOPTN, YPERTI IF ( KOPTN.EQ.1 ) GO TO 280
NPATH = NPATH + 1
TPATH = TPATH + 1.
NITER = -3
CALL FMODE ( NITER, CCT'VC, CCTMY, JTLAG, NMTPL, NOzrJ,

* PROPT, SVALU, TVALU

IF ( JFLAG.EQ.1)

ENDiF CALL PORTH ( NITER, CCTMCC, CCTMY, NCTMCC, YPZRT)

GO TO 280



-285-5

END IF

NrLAG = 0

IF ( CCTMY(3) .LT.CCTMY(2) ) CALL KINES ( 3, CCTWC, CCTMY, NFLAG
IF ( NrLAG.EQ.1 ) GO TO 280

C IT ( ICOL3.EQ.NTRCE.AND.XCONN(ICOL2,NTRCE).NE.0. ) THENI

KOPTN =I

CALL KINET ,3, CCTbfX, CCT4Y, KOPTN, YPERT

IT ( KOPTN.EQ.1 ) GO TO 280I

NITER = 3
CALL MHODE ( NITER, CCTWC, CCTMY, JYLAG, NMTRL, NOETJ, PROPT,
* SVALU, TVALU
IF ( JFLAG.EQ.1)

* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT
GO TO 280

END IFI
C
C 4TH5

DO 270 ICOL4 = 1, NTRCE
IF ( XCONN(ICOL3,ICOL4) .EQ.0. ) GO To 270
IF ( XCONN(ICOL3,ICOL4).EQ.CCTMX(l) ) GO TO 270
IF ( XCONN(ICOL3,ICOL4).EQ.CCT4X(2) ) GO TO 270I
IF ( ICOL4.EQ.ICOL1.OR.ICOL4.EQ.1COL2 ) GO TO 270
NCTMX(4,1) = ICOL3
NCTM~X(4,2) = ICOL4I
CCTMX(4) = XCONN(ICOL3,ICOL4)
CCTMY(4) = YCONN(ICOL3,ICOL4)
IT ( CCTMX(4) .GE.CCTMX(3) .AZD.CCTMAY(4) .LE.CCTMY(3)

* GO TO270I

IT ( ICOL4.EQ.1.AND.CCTbfX(4).NE.0. ) THEN
IF ( XCONN(ICOL3,l).GT.CCTb0X(l) ) THEN

KPN= 0I
CALL KINET ( 4, CCTMXV, CCTMY, KOPTN, YPERT
IT ( KOPTN.EQ.1 ) GO TO 270
NPATH = NPATH + 1I
TPATH = TPATH + 1.

NITER = -4
CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMThL, NOEFJ,

* PROPT, SVALU, TVALUI
I F ( JFLAG. EQ. 1)

*ENDIF CALL PORTH ( NITER, CCTbIX, CCTM, NCTMX, YPZRT)

Go TO 270

NTLAG = 0I
IF (CCTMY(4) .LT.CCTMY(3) ) CALL KINES ( 4, CCTMX, CCTmy, NrLAG
IF (NFLAG.EQ.1 ) GO TO 270

IF (ICOL4.EQ.NTRCE.AND.XCONN(ICOL3,NTRCE).NE.0. ) THEN
KOPTN =0
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CALL KINET ( 4, CCThDC, CCTMY, KOPTN, YPERT
IT ( KOPTN.EQ.1 ) GO TO 270
NPATH = NPATH + 1

NITER = 4
CALL FMODE ( NITER, CCTVC, CCTMY, JTLAG, NMTRL, NOErJ, PROPT,
* SVALT, TIALU

IF ( JFLAG.EQ.1)
* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YprRT

GO TO 270
ENDIF

C 5TH
CIDO 260 ICOL5 = 1, NTRCE

IF ( XCONN(ICOL4,ICOL5).EQ.O. ) GO TO 260
IT ( XCONN(ICOL4,ICOL5).EQ.CCTMX(1) ) GO TO 260
IF ( XCONN(ICOL4,ICOL5).EQ.CCT4X(2) ) GO TO 260IIT ( XCONN(ICOL4,ICOL5) .EQ.CCTMX(3) ) GO TO 260
IF ( ICOL5.EQ.ICOL1.OR.

* ICOL5.EQ.ICOL2.OR.ICOL5.EQ.ICOL3 ) GO TO 260
NCTNX(5,1) = ICOL4
NCTMX(5,2) = ICOL5
CCTMVC(5) = XCONN(ICOL4,ICOL5)
CCTMY(5) = YCONN(ICOL4,ICOL5)
IF ( CCTMX(5) .GE.CCTNX(4) .AND.CCTMY(5) .LE.CCTMY(4)

GO To 260

IF(ICOL5.EQ.1.ANqD.CCTMX(5).NE.0. ) THENI ( XCONN(ICOL4,1).GT.CCTWC(l) ) THEN
KOPTN = 0
CALL KINET ( 5, CCTbMC, CCTMY, KOPTN, YPERT)

IF ( KOPTN.EQ.1 ) GO TO 260

CALL MHODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOErJ,
* PROPT, SVALU, TVALU

IT ( JFLAG.EQ.1)
* CALL FORTH ( NITER, CCTWC, CCTMY, NCTMX, YPERT

GO TO 260

CE N D I F I T ( , C T X C T M , O T N Y P T

IFCCTMY(5) .LT.CCTMY(4) ) CALL KINKS ( 5, CCTICC, CCTI4Y, NYLAG)
IT NFLAG.EQ.1 ) GO To 260

IF ( COL5.EQ.NTRCE.AND.XCONN(ICOL4,NTRCE).NE.0. ) THEN

CALL ODNE ( 5I, CCT C, CCTMY, JFLG, P TRNIJ

* SVALU, TVALU
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IF ( JFLAG. EQ. 1
* CALL PORTH ( NITER, CCTMVC, CCTMY, NCTMfX, YPERT

GO TO 260U

c 6TH

DO 250 ICOL6 = 1, NTRCE

IF ( XCONN(ICOL5,ICOL6) .EQ.0. )GO TO 250

IT ( XCONN(IC0L5,ICOL6).EQ.CCTl4X(1)) GO TO 250I
IF ( XCONN(ICOL5,ICOL6) .EQ.CCTbI(2) )GO TO 250

IT XCONN(ICOL5,ICOL6) .EQ.CCTI4X(3) )GO TO 250

IF (XCONN(ICOL5,ICOL6).EQ.CCTMX(4) )GO TO 250
IF ( COL6.EQ.ICOL1.OR.ICOL6.EQ.ICOL2.oR.I

* 1COL6.EQ.ICOL3.OR.ICOL6.EQ.ICOL4 ) GO TO 250

NCTMX (6, 1) = ICOL5
NCTWC(6,2) = ICCL6I
CCTMX(6) = XCONN(ICOL5,ICOL6)

CCTMY(6) = YCONN(ICOL5,ICOL6)

IF ( CCTlMX(6) .GE.CCTMX(5) .AND.CCTMY(6) .LE.CCTMfy(5)

* GO TO250I

IF ( 1COL6.EQ.1.AND.CCTMX(6).NS.0. ) THEN
IF ( XCONN(ICOL5,I).GT.CCTM() ) THEN

ROPTN = 0
CALL KINET ( 6, CCTMX, CCTMY, KOPTN, YPERT
IF ( KOPTN.EQ.1 ) GO To 250KPATH= NPAH +
TPATH = NPATH + 1.

NITER = -6

CALL FMODE ( NITER, CCTMXC, CCTMY, JFLAG, NMTRL, NOEFJ,

* PROPT, SVALU, TVALU)I
IF ( JFLAG.EQ.l

CALL PORTH ( NIECCTMX, CT4,NCTMX, PR

* ENDIFNTRCTYYPT

GO TO 250
END IF

NFLAG = 0I

IF (CCTMY(6) .LT.CCTMY(5) ) CALL KINES ( 6, CCTMVC, CCTMY, NFLAG
IT NFLAG.EQ.1 ) GO TO 250

IF (ICOL6.EQ.NTRCE.AND.XCONN(ICOL5,NTRCE).NE.0. ) THEN
KOPTN = 0
CALL KINET ( 6, CCTbOC, CCTMY, KOPTN, YPERT

IT ( KOPTN.EQ.1 ) GO TO 250
NPATH = NPATH + 1.

NITER = 6
CALL FMODE ( NITER, CCTMV, CCTMY, 3TLAG, NMTRL, NOErJ, PROPT,U
* SVALU, TVALU

IT ( JFLAG.PQ.1)
* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX YPERT

GO To 250I
ENDID

C
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C 7TH
CIDO 240 ICOL7 = 1, NTRCE

IF ( XCONN(ICOL6,ICOL7) .EQ.O. ) GO TO 240
IT ( XCONN(ICOL6,ICOL7).EQ.CCTMVC(l) ) GO TO 240
IF ( XCONN(ICOL6,ICOL7) .EQ.CCTMX(2) ) GO TO 240IIF (XCONN(ICOL6,ICOL7).EQ.CCTHX.(3) )GO TO 240
IF (XCONN(ICOL6,IC0L7).EQ.CCTMX(4) )GO TO 240
IF (XCONN(ICOL6,ICOL7).EQ.CCTMX(5)) GO TO 240
IF (ICOL7.EQ.ICOL1.OR.ICOL7.EQ.ICOL2.OR.

ICOL7.EQ.ICOL3.OR.ICOL7.EQ.ICOL4.OR.
* ICOL7.EQ.ICOL5 ) GO TO 240

NCTbDX(7, 1) = ICOL6I NCTMX(7,2) = ICOL7
CCTi4X(7) = XCONN(ICOL6,ICOL7)
CCTMY(7) = YCONN(ICOL6,ICOL7)
IF ( CCTWC(7) .GE.CCTbMC(6) .AND.CCTMY(7) .LE.CCTMY(6))

GO GTO240

IF ( ICOL7.EQ.1.AND.CCTW(7).NE.0. ) THEN
IF ( XCONN(ICOL6,1).GT.CCT14X(l) ) THEN

CALINT(7 CCTI, CCTMY, KOPTN, YPERT

I NPATH = NPATH + 1
TPATH = TPATH + 1.
NITER = -7
CALL FMODE ( NITER, CCTMX, CCTMY, JYLAG, NMTRL, NOEFJ.

* PROPT, SVALU, TVALU

IF ( JFLAG.EQ.1)

I *ENDIF CALL ORTH ( NITER, CCTMC, CCTMY, NCTMX, YPERT

GO TO 240
END IF

NFLAG = 0
IF ( CCTMY(7) .LT.CCTMY(6) ) CALL KINKS ( 7, CCTMX, CcTmy, NFLAG)
IF ( NFLAG.EQ.1 ) GO TO 240

C
IF (ICOL7.EQ.NTRCE.AND.XCONN(ICOL6,NTRCE).NE.O. ) THEN

I IT ( KOPTN.ZQ.2. ) GO TO 240
NPATH - NIATH + 1
NITER = 7
CALL MHODE ( NITER, CCTMX, CCTMY, JrLAG, NMTRL, NOEFJ, PROPT,

20 SVALU, TVALUI CALL WORTH ( NITER,CCT14X, CCTMY, NCTMX, YPERT)

DO 230 ICOL8 = 1, NTUCE
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IF (XCONN(ICOL7,ICOL8).EQ.0. )GO TO 230
IF (XCONN(ICOL7,ICOLS).EQ.CCTMCC(1)) GO TO 230
IF (XCONN(ICOL7,ICOL8).EQ.CCTMX(2) )GO To 230I
IT XCONN(ICOL7,ICOLS).EQ.CCTMX(3) )GO TO 230

IF (XCONN(ICOL7,ICOL8).EQ.CCTMX(4) )GO TO 230
IF (XCONN(ICOL7,ICOL8) .EQ.CCTMX(5) )GO TO 230

IF (XCONN(ICOL7,ICOL8).EQ.CCTMX(6) )GO TO 230
IF (ICOLS.EQ.ICOL1.OR.ICOL8.EQ.ICOL2.OR.

* COL8.EQ.ICOL3.OR.ICOL8.EQ.ICOL4.OR.
ICOL8.EQ.ICOL5.OR.ICOL8.EQ.ZCOL6 )GO TO 230I

NCTNX (8, 1) = ICOL7

NCTMX(8,2) = ICOLS
CCTHX(8) = XCONN(ICOL7,ICOL8)
CCTZ4Y(8) = YCONN(ICOL7,ICOL8)I
IF ( CCTZ4X(8) .GE.CCTNX(7) .AND.CCTMY(8) .LE.CCTMY(7)

* GO To230

IF ( ICOL8.EQ.1.AND.CCTMVC(8).NE.O. ) THEN
IT ( XCONN(ICOL7,1).GT.CCTbMC(l) ) THEN

KOPTN = 0
CALL KINET ( 8, CCTMX, CCTMY, KOPTN, YPERT)I
IT ( KOPTN.EQ.1 ) GO To 230
NPATH = NPATH + 1
TPATH = TPATH + 1.

NITER = -8
CALL FMODE ( NITER, CCTMVC, CCTMY, JYLAG, NMTRL, NOEFJ,

* PROPT, SVALU, TVALU

IF ( JFLAG.EQ.1 )
* CALL PORTS ( NITER, CCTMX, CCTMY, NCTMX, YPERT
END iF

GO TO 230
END IFI

C
NFLAG = 0

IF (CCTMY(8) .LT.CCTMY(7) ) CALL KINES ( 8, CCTWC, CCTMY, NFLAGI
IT NFLAG.EQ.l ) GO TO 230

C
IF (ICOLS.EQ.NTRCE.AND.XCONN(ICOL7,NTRCE).NZ.0. ) THEN

KOPTN = 0I
CALL KINET ( 8, CCTMX, CCTMY, KOPTN, YPERT)
IF ( KOPTN.EQ.1 ) GO TO 230

NPATH = NPATH + 1I
NITER = 8
CALL FMODE ( NITER, CcTmx, CCTMY, JFLAG, NMtTRL, NOEFJ, PROPT,
* SVALU, TVALU

* CALL PORTH ( NITER, CCTMX, CCTMY, NCTNX, YPERTIF(JLGQ.I

GO To 230

ENDIF

DO 220 ICOL9 = 1, NTRCE

IF ( XCONN(ICOL8,ICOL9).EQ.0. )GO TO 220
DO 180 JITER = 1, 7
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IF ( XCONN(ICOL8,ICOL9) .EQ.CCTWC(JITER) ) GO TO 220

180 CONTINUEIF(1I9E.CL.RIO9E.CL.RIO9E.CL.R
IF(ICOL9.EQ. ICOL4.OR.ICOL9.EQ.ICOLS.OR.ICOL9.EQ.ICOL3.OR.

* ICOL9.EQ.ICOL7 ) GO TO 220
NCTMX(9,1) = ICOL8I NCTHX(9,2) = ICOL9
CCTMX(9) = XCONN(ICOL8,ICOL9)
CCTMY(9) = YCONN(ICOL8,ICOL9)

IF (CCTWC(9) .GE.CCTMX (8).AND.CCTMY(9) .LE.CCTMY(8)

C
IF (ICOL9.EQ.1.AND.CCTMX(9).NE.0. ) THENIIF ( XCONN(ICOL,1).GT.CCTMX(l) ) THEN

KOPTN = 0
CALL KINET ( 9, CCThrt, CCTMY, KOPTN, YPERT
IF ( KOPTN.EQ.1 ) GO To 220IPT PT
NPATH = TPATH + 1.

NITER = -9

CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ,
* PROPT, SVALU, TVALU

IF ( JrLAG.EQ.1)

I * ENDIF CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT)

GO TO 220I ENDIF
NFLAG = 0
IFT CCTMY(9) .LT.CCTMY(8) ) CALL KINKS ( 9, CCTMX, CCTMY, NFLAG)I IF (NrLAG.EQ.1 ) GO TO 220

IF (ICOL9.EQ.NTRCE.AND.XCONN(ICOL,NTRCE).NE.0. ) THEN
KOPTN =0
CALL KINET ( 9, CCTMX, CCTMY, KOPTN, YPERT
IF ( KOPTN.EQ.1 ) Go To 220
NPATH = NPATH + 1
NITER = 9

CALL FHODE ( NITER, CCTIVC, CCTMY, JYLAG, NMITRL, NOEFJ, PROPT,
* SVALU, TVALU

IF ( JFLAG.EQ.1)
* CALL PORTH ( NITER, CCTWC, CCTMY, NCTMX, YPERT)

GO TO 220
END IF

CIC 10TH
C

Do 210 ICOLO = 1, NTRCE
IF ( XCONN(ICOL9,ICOLO).EQ.0. ) GO TO 210

D)O 190 JITER = 1, 8
IF ( XCONN(ICOL9,ICOL0).EQ.CCTMCC(JITER) ) GO TO 210

190 CONTINUEIF(IOOE.CL.RIOOE.CL.RXOOZ.CL.R
IF(ICOLO.EQ.ICOL14.OR.ICOLO.EQ.ICOL2.OR.ICOLO.EQ.ICOL3.OR.I * ICOLO.EQ.ICOL7.OR.XCOLO.EQ.ICOL8 ) GO TO 210
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NCTMX (10, 1) = I COL 9
NCTWC(10,2) = ICOLO
CCTMY(10) = YCONN(ICOL9,ICOL0)I
CCTMCC(10) = XCONN(ICOL9,ICOLO)

C IF CCTH4X(10).GE.CCTMX(9).AND.CCTMY(10).LE.CCTMY(9))I

IF (ICOL0.EQ.1.AND.CCTMX(10) .NE.0. ) THEN

IF ( XCONN(ICOL9,1).CT.CCTMIX(1) ) THEN
KOPTN = 0

CALL KINET ( 10. CCTMX, CCTMY, KOFTN, YPERTjI

IF ( KOPTN.EQ.1 ) GO TO 210
NPATH = NPATH + 1

TPATH = TPATH + 1.
NITER = -10
CALL FMODE ( NITER, CCTMX, CCTMY, JYLAG, NMTRL, NOEFJ,

* PROPT, SVALU, TVALU
IF ( JFLAG.EQ.1)

* CALL PORTH ( NITER, CCTMX, CCTMY, NCTMX, YPERT
ENDIF

GO To 210I
ENDIF

IT ( ICOLO.EQ.NTRCE.AND.XCONN(ICOL9,NTRCE).NE.O. ) THEN

KOPTN = 0
CALL KINET ( 10, CCTMX, CCTMY, KOPTN, YPERT
IF ( KOPTN.EQ.1 ) Go To 210
NPATH = NPATH + 1I
NITER = 10

CALL FMODE ( NITER, CCTMX, CCTMY, JFLAG, NMTRL, NOEFJ, PROPT,
* SVALU, TVALU

IT ( JTLAG.EQ.1)
* CALL PORTH (NITER, CCTMX, CCTMY, NCTICC, YPERT)

GO TO 210

LCOUN = LCOUN +1

210 CONTINUE

220 CONTINUE
230 CONTINUE
240 CONTINUE

250 CONTINUEI

270 CONTINUE
280 CONTINUE

290 CONTINUE5

300 CONTINUE
IT ( LCOUN.GT.0 )WRITE(6,950) LCOUN

C
C STORE THE TOTAL NUMBER OF EFFECTIVE JOINT PATHS

C
MPATH = TPATH
WI ( MOPTNP.5 MAITH,4)NAH PT
IT(690 MP NE5)RI790 PATH, MPATH

C
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C TOTAL JOINT PATHES WHICH ARE M4ECHANICALLY UNSTABLE NHODE
CI WRITE(6,930) NMODE

WRITE(9,925) ICASE, 1031)4, NPATH, NMODE
WRITE(7,945) NMODE
IF ( !O4ODE.GE.1 ) THENI WRITE(6,990) SFMIN

CALL PORTH ( NCRIT, CRITX, CRITY, NCTNX, YCRIT

WRITE(8,965) SFMIN
ENDIFI TR H TTSIA NOMTO NOTP

C

I IF ( NSTAT.GT.0.AND.MOPTN.GE.5 ) THEN
DO 500 ISTEP = 1, NSTEP
VALUE = VAPMN + (ISTEP-1) * DSTEP
WRITE (9, 955) VALUE, SVALU(IOSIM, ISTEP), TVALU(IOSIM, ISTEP)I500 CONTINUE

END IF
IF ( IOSIM.EQ.NOSIM.AND.NSTAT.GT.0 ) THENI IF ( ICASE.EQ.NCASE ) WRITE(6,975)

DO 600 ISTEP = 1, NSTEP
SVALE = 0.
TVALE = 0.
DO 550 JOSIM = 1, NOSIM
SVALE = SVALE + SVALU(JOSIM,ISTEP)

TVALE = TVALE + TVALU (J05114, ISTEP)
550 CONTINUESVL(IISTP VL

SVALU(blOSIM,ISTEP) = SVALE

VALUE = VARMN + ( ISTEP - I.) DSTEPI C
CASEO(ICASE,ISTEP) = SVALE
CASET(ICASE,ISTEP) = TVALE
IF ( ICASE.EQ.NCASE )
WRITE(6,956) VALUE, (CASEO(JCASE,ISTEP), CASET(JCASE,ISTEP),

* JCASE=1, NCASE)

600 CONTINUEI ENDiF

C STORE THE FINAL STABILITY ANALYSIS ONTO rILE9

IF ( ICASE.EQ.NCASE.AND.IOSIM.EQ.NOSIM.AND.
* NSTAT.NE.O ) THEN

WRITE(9,940) NCASE, NSTEP, NOSIM, NSTATI WRITE (9, 935)
WRITE (6, 980)
DO 710 ISTEP = 1, NSTEP
VALUE = VAR)ON + (ISTEP-1) * DSTEPI DO 715 JCASE = 1, NCASE
IF ( CASEO(JCASE,ISTEP).EQ.0. ) THEN

PROBY(JCASE) = 0.

I ELSPROBY(JCASE) = CASET(JCASE,ISTEP) /CASEO(JCAS,ISTEP)
ENDIF
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715 CONTINUE
WRITE(6,955) VALUE, (PROBY(JCASE) ,JCASE=1,NCASE)
WRITE(9,955) VALUE, (PROBY(JCASE) ,JCASE=I,NCASE)

710 CONTINUE
C
C CALCULATE THE PROBABILITY OF FAILURE OF EACH VOLUME OR DIP
C

WRITE (9,935)
WRITE (6, 985)
DO 730 JSTEP = 1, NSTEP I
TPRBY(JSTEP) = 0.
DO 720 JCASE = 1, NCASE
TPRBY(JSTEP) = TPRBY(JSTEP) + CASET(JCASE,JSTEP)

720 CONTINUE
730 CONTINUE

DO 750 JSTEP = 1, NSTEP
VALUE = VARMN + (JSTEP-1) * DSTEP I
DO 740 JCASE = 1, NCASE

IF ( TPRBY(JSTEP).EQ.0. ) THEN
PROBY(JCASE) = 0.

ELSE
PROBY(JCASE) = CASET(JCASE,JSTEP) / TPRBY(JSTEP)

ENDIF
740 CONTINUE

WRITE(6,960) VALUE, (PROBY(KCASE) ,KCASE=1,NCASE)
WRITE (9,960) VALUE, (PROBY (KCASE),KCASE=1,NCASE)

750 CONTINUE

C STORE THE INFORMATION ONTO TAPE 9
C

WRITE (9, 935)
DO 760 KSTEP = 1, NSTEP
VALUE = VARMN + ( KSTEP-1 ) * DSTEP
WRITE(9,956) VALUE, (CASEO(JCASE,KSTEP), CASET(JCASE,KSTEP),

760 CONTINUEI
76 ONIU JCASE=1,NCASE)

ENDIF

920 FORMAT(//, 5X, 'TOTAL NO. OF REAL EFFECTIVE PATHS = ', I5,

* /, 5X, 'TOTAL NO. OF FACE TO FACE PATHS - ', I5 )
925 FORMAT(415)
930 FORMAT(//, 5X, 'TOTAL NO. OF UNSTABLE JOINT PATHS = ', I5 ) I
935 FORMAT(/)
940 FORMAT(415)
945 FORMAT(15)
950 FORMAT(//, 5X, '*** 10 CONSECUTIVE SEARCHING ORDER IS NOT ',

• 'SUFFICIENT ***',
• /, 7X, 'TOTAL PATHS OVER 10 JOINTS ARE = ', I5 )

955 TORMAT(6X, r7.2, 5(F7.2,3X)) 1
956 FORMAT(6X, F7.2, 5(F7.2,3X,F7.2,3X))
960 FORMAT(6FI0.3)
965 FORMAT(F10.3)

I, 7X, 'CALCULATED INTERSECTION POINTS = 'IS, I
S/, 7X, 'STORED INTERSECTION POINTS - '1 I5 )
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975 FORMAT(//, 5X, 'TOTAL NUMBER OF JOINT PATHS',
* ,4X, 'VALUE TOTAL PATHS UNSTABLE PATHS',

980 FORMAT(//, 5X, 'Pf AT EACH VOLUME CATEGORY',
/, 3x, 'INCREMENT.',3x,'Pf FOR EACH CASE',!)

985 FORMAT(/, 5X, 'Pf OF EACH VOLUME AMONG UNSTABLE PATHS',
/ , 4X, 'INCREMENT', 6X, 'Pf FOR EACH CASE', /)

90FORMAT(//, 5X, 'MIN. FACTOR OF SAFETY = ', F1O.3,

/, 7, '(RESISTING FORCE / DRIVING FORCE )

SUBROUTINE PORTH ( LITER, CCTMXC, CCTMY, NCTMX, YPERT
C
C SUBROUTINE PORTH STORES THE JOINT PATH COORDINATESIC IN FILE 8

COMO4N/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, IOSIM, NSYST,
NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE

DIMENSION CCTMX(10), CCTMY(10), NCT3CC(10,2)
C

ANRAD = 3.1415926 / 180.
XPERT = -0.5
XRA.NG = HEIGT / TAN(ANGLE*ANP-AD)

NITER = ABS (LITER)

IF ( XOPTN.GE.5 ) THEN
NRITE(8,910) NITER
DO 10 lITER = 1,NITERI WRITE (8, 920) CCTMC(IITER), CCTMY(IITER)

1.0 CONTINUX
ENDIF
IF ( MOPTN.GE.5 ) THENI IF ( LITER.LT.0 ) THEN

KITER = NITER + 1
WRITE(8,910) KITERI DO 20 ITER = 1, NITER

CCTMX1 = CCTMX(IITER) + XPERT
CCTMY1 = CCTMY (lITER) + YPERT
WRITE(8,920) CCTbDC1, CCTMY1I20 CONTINUE

CCT)CC1 = CCTMX(1) + XPERT
CCTMY1 = CCTMY(l) + YPERT

LSWRITE(8,920) CCTMX1, CCTMY1

KITER = NITER + 2
WRIT(8,910) KITERI DO 30 lITER = 1, NITER

CCTIVC1 = CCTIC(IITER) + XPERT
CCTMY1 = CCTMY (lITER) + YPERT
WRITE (8,920) CCTIVC1, CCTMY1

30 CONTINUE

CCTME2. - XRANG + XPZRT
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CCTMY1 = HEIGT + YPERT

WRITE(8,920) CCTICC1, CCTXYl

CCTMX1 = CCTMX(l) + XPERTI
CCT14YI CCTMY (1) + YPERT
WRITE(8,920) CCTWC1, CCTNY1

ENDIF ENDII
C

910 FORMAT(15)

C920 FORMAT(2F10.3)I

RETURN

c END

C
SUBROUTINE KINES M ITER, CCTMX, CCTMY, NFLAG)

C SUBROUTINE LINES TESTS WHETHER THE ASSUMED JOINT PATH IS
C KINEMATICALLY ADMISSIBLE OR NOT.

C DIMENSION CCTMX(10), CCTMY(10)I

C
NYLAG = 0

ITER1 = NITER - 1

ITER2'= NITER - 2
XCORI = CCTMX(ITERl)

YCOR1 =CCTMY(ITERl)U
XCOR2 = CCTMX(ITER2)
YCOR2 = CCTMY (ITER2)
XCOOR =CCTMX(NITER)

YCOOR =CCTMY(NITER)
C

IF ( YCORl.EQ.YCOR2 )THEN

IF ( YCOOR.LT.YCOR1 ) THEN

GO TO 50
END IF

ELSE
IF ( XCOR1.EQ.XCOR2 ) THEN

IF ( XCOOR.GT.XCOR1 ) THEN
NFLAG = 1I
GO TO 50

ENDIF
ENDir
SLOPE = (YCOR2 - YCOR1 )/(XCOR2 -XCOR1)I

YCOR3 = (YCOR2-YCOR2.) XCOOR-XCOR1 )/(XCOR2-XCOR1
* + YCOR1

IF (SLOPE.GT.0. .AND.YCOR3.GT.YCOOR )NFLAG = 1I
IT SLOPE.LT.0. .AND.YCOR3.LT.YCOOR )NFLAG = 1

END IF

0 CONTINUEI

C
RETURN
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END

CCC

SUBROUTINE KINET ( MITER, CCTbCC, CCTMY, KOPTN, YPERT
C
C SUBROUTINE KINET CHECKS THE ADMISSIBILITY OFIC AN A.5SUMED JOINT PATH USING MINIMUM DIP AND
C PERTURBATION BEHAVIOR
C

DIMENSION CCTWC(10), CCTMY(10)
DIMENSION SLOPE (10)

C
PIRAD = 3.1415926
XPERT = -0.5
KOPTN=0

C3C FIND THE MINIMUM DIP
C

MPITR = MITER - 1
IF ( MITER.EQ.2 ) GO TO 30
DO 10 lITER = 1, MPITR
JITER = IITER+1

XCOR1 = CCTMX(IITER)
YCOR1 = CCTMY(IITER)I XCOR2 = CCTMC (JITER)
YCOR2 = CCTMY (JITER)
IF ( XCOR1.EQ.XCOR2 ) XCOR2 XCOR2 + I.E-10I DIPAN = ( YCOR2 - YCOR1 ) / (XCOR2 - XCOR1
SuirkL(IITER) =ATAN(DIPA.N)
IF (SLOPE(IITER) .LT.0. ) SLOPE(IITER) =SLOPE(IITER) + PIRAD
IFT XCOR2.LT.XCORl.AND.YCOR2.LT.YCOR1I * SLOPE(IITER) = SLOPE(IITER) + PIRAD

C
C DETERMINE HMN. DIP ANGLE ( RAD.)

I C IF ( IITER.EQ.1 ) THEN
SLMIN = SLOPE (1)
INDSP = 1U ELSE
IF ( SLOPE(IITER).GT.0..AND.SLOPE(IITER).LT.SLMIN )THEN

SLMIN = SLOPE (lITER)
INDSP = lITERUNI

ENDIF

C

C10 CONTINUE

C CHECK THE MOBILITY OF A JOINT PATH

DO 20 lITER = 1, MPITR
IF ( SLOPE(IITER).LT.PIRAD ) GO TO 20
SLTRY = SLOPE(IITER) -PIRAD

IF ( SLTRY.GT.SLMIN )THEN

IOT
REUR



-297-

END IF

20 CONTINUEU

C FIND PURTURBED Y-COORDINATE
C

30 CONTINUE
IF ( MITER.EQ.2 ) THENI

YPERT =(CCTMY(2)-CCTMY(1) )/(CCTMX(2)-CCTVC(l)
* ELSE * XPERT)

YPERT =SLMIN *(XPERT

ENDIF

RETURNI
END

CCC

SUBROUTINE FMODE ( LITER, CCTMCC, CCTMY, JFLAG, NMTRL, NOEFJ,I
* PROPT, SVALU, TVALU

C SUBROUTINE TMODE EVALUATES THE MECHANICAL FAILURE MODE3

C OF AN ASSUMED JOINT PATH USING COULOMB'S SHEAR FAILURE
C CRITERION

C COb4ON/CONTRO/NPOIN, NTRCE, NOSIM, NDOFN, MOPTN, 1051)4, NSYST,U

* NOSET, ANGLE, HEIGT, RANGE, SFMAX, WEIGT, NCASE
CObffON/CONTOL/NMODE, SFMIN, MlOSIM

CObION/CNTROL/CRITX (10), CRITY (10), NCRIT, YCRITU
COI4MON/CONROL/NCTMX (10,2)
COMMON/STATIC/NSTAT, VAR04, DSTEP, NSTEP, ICASE, NREG1, NREG2
DIMENSION NMTRL(NOEFJ), PROPT(NOSET,7)

DIMENSION CCT)VC(1O), CCTMY(10), TLENG(10), DIPTH(10)I
DIMENSION SVALU (40514, NSTEP), TVALU (MOSIM, NSTEP)

C
PIRAD = 3.1415926I
ANRAD = PIRAD /180.
XRANG = HEIGT /TAN (ANGLE*ANRAD)
SLOPF = TAN (ANGLE*ANRAD)
JYLAG = 0I

C
C CALCULATES THE WHOLE AREA

KITER = 0
AREAT = 0.
NITER = ABS(LITER) - 1
DO 40 lITER =1, NITER

=IT(ITR 0.I
JITER = ZITER + 1
XCOR1 = CCTMX(IITER)

XCOR2 = CCTMX (JITER)
YCOR1 =CCTMY(IITER)
YCOR2 = CCTfY (JITER)

)XIT = XCOR2 - XCOR1I
YDIFF - YCOR2 - YCOR1
TLENG(IITER) = SQRT( xDIFF**2 + YDirr**2)I
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IF ( XDIFF.EQ.0. ) GO TO 40
SLOPE = YDiFF / xD)IFF
IT XCOR2.LT.XCORl.AND.YCOR2.LE.YCOR1 )SLOPE =-SLOPE

IF (XCOR2.GT.XCORl.AND.YCOR2.LT.YCOR1 )THEN
WRITE (6, 910)
RETURNI ENDIF

C
IT ( SLOPE.LT.0. ) GO TO 20
KITER = KITER + 1II I( KITER.EQ.1 ) THEN

SLMIN = SLOPE
MINT = 1

ELSEI IF ( SLOPE.LT.SZIIN) THEN

MINJT = IITERUNI
END IF

DIPTH(IITER) = SLOPE
JOINT = NCTMX(MINJT,2) -1

20 CONTINUE
C

IF (XCORl.GE.XRANG.AND.XCOR2.GE.XRANG )GO TO 30
IF (XCORl.LT.XRANG.ANw.XCOR2.LTjeRANG )THEN

AREAl = 0.5 * ( 2.* HEIGT - YCOR1 - YCOR2 ) * A.BS (xDIFF)
YCOR1 = SLOPF * XCOR1
YCOR2 = SLOPY * XCOR2

AREA2 = 0.5 * ( 2.* HEIGT - YCOR1 - YCOR2 ) * ABS(XDIFF)
ELSE

AREA1 = 0.5 * ( 2.* HEIGT - YCOR1 - YCOR2 ) * ABS (XDIFF)I IF ( SLOPE.GE.O. ) THEN
XCOOR = XCOR1

ELSE
XCOOR = XCOR.2I END IF

YCOOR = SLOPr XCOOR
AREA2 = 0.5 *(XRANG - AMIN1(XCOR1,XCOR.2))*I * ( HEIGT - YCOOR

AREA3 = AR.EAl - ARXA2
IF (ARZA3.LE.0. )WRITE(6,900)IIT SLOPE.LT.0. )AREA3 = -AREA3
AREAT = AREAT + ARZA3
GO TO 40

30 CONTINUE
C

ARZA1 = 0.5 *(2.* HEIGT - YCOR1 -YCOR2 )*ABS (XDIFF)
IT ( SLOPE.LT.0. ) AREAl - -AREAl
AREAT - AREAT + AREAl

40 CONTINUEI IT AREAT.LE.0. ) WRITE(6,900)
C
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C USING COULOMB'S LAW ON A MIN. DIP JOINT FACE, CHECK THE
C POSSIBILITY OF SLIDING OF ROCK BLOCK

TOWGT = WEIGT * AP.EAT

DIPMN = ATAN(SLMIN)
DRIVE = TOWGT * SIN(DIPMN)

TOTCH = 0.
TENCU = 0.
DO 50 lITER = 1, NITER

C INCLUDE THE POSSIBILITY OF THE PARALLEL DIP ANGLE

JTSPT = NCTMX (XITER,2) - 11
NOMAT = NMTRL(JTSPT)
IF ( DIPTH(IITER) .EQ.SIMIN )THEN

COHJT = PROPT(NOMAT,5) *TLENG(IITER)

TOTCH = TOTCH + COHJT
ELSE

TENJT = PROPT(NOMAT,7) *TLENG(IITER)

TENCU = TENCU + TENJTI
END IF

C

50 CONTINUE

NOMAT = NMTRL (JOINT)I
FRIJT = PROPT (NOMAT, 6)

RESIT = TOTCH + TOWGT * COS(DIPMN) * TAN(FRIJT) + TENCU

SAFEF = RESIT / DRIVE
C
C STATISTICAL ANALYSIS FOR VOLUME ( NSTAT = 1
CI

IF ( NSTAT.EQ.2 )GO TO 200

ICTGY = ( AREAT -VAPblN ) / DSTEP + 2I
IFT AREAT.LT.VARMN )ICTGY=1
IF (ICTGY.GT.NSTEP )ICTGY = NSTEP
SVALU(IOSIM,ICTGY) =SVALU(IOSIM,ICTGY) + 1.3

IF ( NSTAT.NE.1.AND.ICASE.LE.NREG2.AND.IOSIM.LE.NRZG1 ) THEN
WRITE(10,940) ICASE, IOSIM, ARZAT, DIPMN, TOTCH, TENCU,

ZNI RESIT, DRIVE

C
200 CONTINUE

C STATISTICAL ANALYSIS FOR MIN. DIP ANGLE (NSTAT =2)

C
IF ( NSTAT.NE.2 ) GO TO 300
DIPDG - DIPMN / ANRAD
ICTGY = ( DIPOG - VAPRO ) DSTEP + 2
IFT DIPDG.LT.VARMN )ICTGY =1

IF (ICTGY.GT.NSTEP )ICTGY - NSTEPI
SVALU(IOSIM,ICTGY) =SVALU(IOSIM,ICTGY) + 1.

C
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300 CONTINUE
IF ( SAFEF.GT.SFMAX ) RETURN

C
C STORE THE UNSTABLE JOINT2 PATH INTO TVALU
C

IFT NSTAT.EQ.1.AND.A.EAT.LT.VARON ) GO TO 400
IFT NSTAT.EQ.2.AND.DIPDG.LT.VAR4N ) GO TO 400
IFT NSTAT.GT.0.AND.ICTGY.LE.NSTEP ) THEN

TVALU(IOSIM,ICTGY) = TVALU(IOSIM,ICTGY) + 1.
ENDIF

C
400 CONTINUE

- JFLAG = 1.
NMODE = NMODE + 1
IF ( !OIODE.EQ.1 ) THEN

SYMIN = SAFEF
ELSE

IT ( SAFEF .LT .SFMIN )SFMIN =SAFEF

ENDIF
C
C STORE THE COORDINATES OF THE CR~ITICAL JOINT PATH FOR PLOTTING
C

IF ( SFMIN.EQ.SAFEF ) THEN
NITER = ABS (LITER)
DO 60 ITER = 1, NITER

CRITX (ITER) = CCTWC (XITER)
CRITY(IITER) = CCTMY(IITZR)

60 CONTINUE
UCRIT = LITER
XPERT = -0.5
YCRIT = SLMIN * XPERT

ENDIF
C
900 FORMAT(//,5X,'*** NEGATIVE AREA )
910 FORMAT(//,5X,'*** ENCOUNTERED A KINEMATICALLY INADMISSIBLE PATH')
940 F0RMAT(2X,2I3,2X, 6(F1O.3,lX))

C
RETURN
END
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